Functionnal and multimodal quantitative phase imaging in Mulhouse (68) - Université Haute-Alsace

Functionnal and multimodal quantitative phase imaging

Description: Quantitative phase imaging (QPI) becomes more and more popular in biomedical imaging, especially in optical microscopy. Unlike other methods relying on fluorescence of contrast agents, incorporated into the sample, QPI extracts phase and amplitude directly from the optical field transmitted or reflected by the object, rendering sample labeling optional. Within the IMTIS (Multimodal Imaging, Information and Signal Processing) team at IRIMAS (Institut de Recherche en Informatique, Mathématiques, Automatique et Signal), we have been developing, for about 15 years now, a generalization of QPI called Tomographic Diffractive Microscopy (TDM). By varying the object's illumination conditions, it is possible to obtain a 3D reconstruction of its complex refractive index (in absorption and refraction), with improved resolution compared to conventionnal QPI approaches.
These methods offer an interesting alternative to flurorescence microscopy, but suffer from a lack of chemical selectivity in the reconstructed information. Indeed, very different structures may have a similar refractive index. The aim of this innovative PhD proposal is to develop new approaches, in order to restore selectivity to tomographic images. Read more


Work location:
61, rue Albert Camus

Contacts: Nicolas Verrier (NICOLAS.VERRIER@UHA.FR), Olivier Haerberle (OLIVIER.HAEBERLE@UHA.FR)