Publier votre annonce

Nous publions dans le Blog emploi de la SFO, les annonces que nous proposent les membres de la SFO ou tout acteur de l'optique et de la photonique.
Postes d'ingénieur, Post-doctoraux, Sujets de thèse, Stages Masters, ....sont les annonces publiées régulièrement dans ce Blog emploi.

Seules les annonces concernant l'optique photonique sont publiées.
Pour la publication de vos annonces, elles doivent comporter un texte d'introduction en français, le ou les contacts, l'adresse complète de la société.
Nous ajoutons de préférence des adresses URL et non des fichiers à télécharger.

Formulaire pour publier votre annonce

  • Postdoctoral position (2 years) on acousto-optic imaging in Paris (75) - Institut Langevin ESPCI Paris

    Novel laser sources and real-time detection for in-vivo acousto-optic imaging

    Description: Imaging biological tissue with light is a great challenge for the detection of objects (e. g. tumors) at large depth (>cm), since multiple scattering processes prevent from a conventional imaging. The combination of ultrasound (US) and light within the medium allows to retrieve an optical information guided by the ultrasound beam, ballistic at medical application frequencies, e.g. 6MHz. Such a strategy is called Acousto-Optic Imaging (AOI), also called Ultrasound Optical Tomography (UOT), it is based on the acousto-optic effect (AO). Such an imaging is developed by many teams worldwide, in the scope to develop a bi-modal system for Medicine and Biology, in combining complementary contrast with ultrasound (e.g. conventional B-Mode imaging) and light. Many architectures have been studied up to now, but technological bottlenecks remain in order to go beyond a proof of principle. This is due to the weakness of the acousto-optic signal, itself superimposed on a strong speckle background. Among the various techniques developed at Institut Langevin, digital holography is a promising configuration for the detection, using a CMOS camera with a large number of pixels, while data treatment is optimzed with a GPU acquisition scheme. Original US-excitations are used in order to optimize the number of photons tagged by the US. Such a point will be developed by the candidate with a new fully-programmable US-system. Read more

    Work location:
    Institut Langevin ESPCI Paris - CNRS UMR 7587
    1 rue Jussieu
    75005 Paris
    France

    ContactFrançois RAMAZ (francois.ramaz@espci.fr)

    Lire la suite

  • Doctoral contract in Visual Optics in Hong Kong (HK) - Hong Kong Polytechnic University

    3-year Doctoral contract in Visual Optics

    Description: The ITF-funded project: Towards an Intelligent Eyeglass with Autocorrection, hosted by The Hong Kong Kong Polytechnic University (QS ranking: 65th), is inviting applications for a 3-year doctoral contract to develop smart adaptive eyeglasses for presbyopes and low-vision patients.
    The candidate will join an international team of experts in the field of Optics (Dr. Alexander Goncharov, Dr Charles-Edouard Leroux, Dr Elie De Lestrange-Anginieur), Visual Science (Dr Elie De Lestrange- Anginieur, Prof. Allen Cheong, Prof George Woo), and Electronics (Prof Eric Cheng) including:
    • The School of Optometry (Home | School of Optometry (polyu.edu.hk) and the Department of Electrical and Electronic Engineering Home | Department of Electrical and Electronic Engineering (polyu.edu.hk) at the Hong Kong Polytechnic University,
    • the MIPA laboratory Laboratoire MIPA – Mathématiques, Informatique, Physique et Applications (unimes.fr) at the University of Nimes and,
    • the Applied Optics group Applied Optics group Applied Optics - University of Galway (nuigalway.ie) at the University of Galway.
    As a member of the ITF-project, the doctoral candidate will be primarily based in Hong Kong. His/her degree will be delivered by the School of Optometry – an international research center recognized for its high-impact research on refractive anomalies and age-related ocular diseases.
    The appointee is expected to design the optics of adaptive eyeglasses, develop wavefront sensing systems integrated into the eyeglasses, and build an adaptive control system for real-time adjustment of the wearer’s focus. Read more

    Work location:
    Hong Kong Polytechnic University
    11 Yuk Choi Road
    Hung Hom, Kowloon
    Hong Kong

    Applicatipn procedure (resume): Elie De Lestrange-Anginieur (elie.delestrangeanginieur@polyu.edu.hk)

  • Generation of pairs of entangled qubits from optical fiber resonators in Toulouse (31) - LAAS

    Generation of pairs of entangled qubits from optical fiber resonators

    Description: LAAS has been involved for several years in the production of fiber optic resonators with a high quality factor for applications in the generation of optical or microwave signals with high spectral purity. These resonators are currently optimized for the generation of optical frequency combs or, more simply, for obtaining high quality factors for passive operation such as laser stabilization. 

    The goal of the thesis is to optimize these resonators for a completely different application: the generation of photon pairs or of quantum frequency combs. This optimization may relate to the free spectral range, the type of optical guide and the optical pumping conditions. The experimental approach will use a pulsed laser and filtering systems, then photon counting with SPADs. The pump rejection will need to be correctly sized for a zero pump detection probability. Finally, we will check the pump threshold for the generation of photon pairs, which we will compared to the theory. The assessment of quantum comb generation with this approach will also be investigated. To this purpose, a multi-channel photon detector will be assembled with SPAD devices, RF amplifiers and signal processing and counting unit. The work will then continue by setting up a quantum fiber optical link using time bin qubits. We will study the entanglement of qubits using a two-input detector. Subsequently, a compact version of the system could be designed in conjunction with an industrial partner.
    Read more

     

    Work location:
    CNRS - LAAS
    7 Avenue du Colonel Roche
    31400 Toulouse, France

    Contact: Olivier Llopis (llopis@laas.fr)

    To apply: Job CNES - 24-021 Generation of pairs of entangled qubits from optical fiber resonators Ph.D., 36 months or Résonateurs optiques fibrés pour la génération de paires de photons intriqués - LAAS-CNRS

    Lire la suite

  • Crystal photonic based SPR sensor for high sensitivity applications in Marne-la-Vallée (77) - Gustave Eiffel University

    Crystal photonic based SPR sensor for high sensitivity applications

    Description: Biological and chemical sensors are becoming increasingly important for environmental monitoring, medical diagnostics, and other industries such as the food industry and security. These sensors can be used to measure contaminants such as air pollutants and hazardous chemicals in air, water, or soil, and can help to provide faster, more reliable, and low-cost medical diagnostics. In addition, biosensors can be used to detect chemical contaminants in foods for ensuring safety and quality. The use of sensors in security and defence is also growing, with applications in areas such as explosives detection and bioterrorism. The photonic sensor consists of a surface in contact with the analyte, a light source, and a photodetector. The interaction of the propagating light with the surface changes its parameters or properties. Most often, it is desired to measure the variation in the refractive index related to the capture of substances surrounding the surface with the interferometry technique or by determining the spectral shift of the optical resonance. This technique allows a real-time measurement of the density of captured substances. One of the most efficient sensor categories is plasmonic sensors based on the use of the highly selective properties of surface plasmons (optical or more generally electromagnetic modes at the interface between a metal and a dielectric) which have demonstrated their superiority as chemical and biological sensors [1], [2]. These plasmonic sensors exploit the variation of light as it interacts with the surrounded medium of interest. This category of unlabelled sensors is more interesting because it does not require a preparation step to attach labels (such as fluorescent molecules) to the analytes that takes a long time to prepare, which is sometimes critical, and allows biological functions to be preserved. Another family of sensors is the one based on optical resonators where the principle is to excite a specific mode in the ring. The presence of the analyte around the resonator modifies the mode condition. The insertion of photonic crystals makes it possible to control the light, guide it and thus improve the sensitivity of the sensor. It is a form of hybridization with the aim of improving the volume of light/matter interaction [3]. Photonic crystals consist of a periodic lattice of holes or rods in the substrate. Compact sensors are needed for large scale use and deployment. Silicon photonics platform offers mature technology that could deliver innovative components integrated on a single chip. Heterogeneous III-V technology on silicon makes it possible to offer high-performance laser sources and photodetectors integration with passive components on silicon. The use of silicon photonics has many advantages such as the compactness of the compactness due to its high refractive index, low cost and its compatibility with CMOS technology. The objective of this thesis is the design of a hybrid sensor based on photonic crystals and localized surface plasmon resonance offering high-sensitivity detection. This photonic sensor operates at telecom wavelengths in order to benefit from heterogeneous III-V silicon technology. This study of this sensor topology is the first one at the Esycom laboratory, but it will benefit from the expertise of the supervisor team in modeling of metasurfaces, silicon photonics, surface plasmon devices and photonic crystals. Read more

    Work location:
    Gustave Eiffel University • Marne-la-Vallée Campus 
    5, Boulevard Descartes • Champs-sur-Marne
    77454 Marne-La-Vallée CEDEX 2
    FRANCE

    Contacts
    Thesis co-directors: Catherine Algani (catherine.algani@lecnam.net), Elodie Richalot (elodie.richalot-taisne@univ-eiffel.fr)
    Co-supervision: Maha BEN RHOUMA (maha.ben-rhouma@univ-eiffel.fr), Salim FACI (salim.faci@lecnam.net)

    Lire la suite

  • Post-doctoral contract in Paris (75) - Gustave Eiffel University

    Post-Doctoral Position in Microwave Photonics

    Description: The present postdoctoral research takes place in the frame of PIEC project PURELIGTH. The project aims at developing of experimental setup for DC and analog characterizations of photonics devices and circuits. The targeted applications are optical communication: radio over fiber and LIFI. The photonic/microwave components will be widely used in ultra-high-speed, low-cost, low consumption communications networks that will enable future intra-building and/or inter-building communications within the city and in future 6G applications. These future communications will take place at increasingly higher frequencies (millimeter and THz) and will be associated with advanced modulation formats (FBMC, OFDM) and broadband to obtain ultra-high speed at all points. Radio-over Fiber approach is being pushed into these bands to simplify remote antenna systems, to offer high density networks and to optimize the power emissions. The developments from 5G to 6G are also pushing towards the study of optical wireless communications of the LiFi type. The study of such systems and their integration is therefore essential, all the more so with the deployment by operators of optical fiber to the home with FTTH (Fiber To The Home) networks. The host lab is ESYCOM involving research in the fields of communication systems, sensors and microsystems for the city, the environment and people. More specifically, the topics covered are:
    - antennas and propagation in complex media, photonic components
    - microwaves; microsystems for environmental analysis and depollution, for health and the interface with living organisms 
    - micro-devices for mechanical, thermal or electromagnetic ambient energy recovery.
    The postdoctoral position deals with the first topic. Read more

    Work location:
    Gustave Eiffel University, Esiee-Paris
    2 boulevard Blaise Pascal
    BP 99
    93162 Noisy-le-Grand CEDEX
    FRANCE

    Application procedure (A detailed curriculum vitae including a description of previous experiences, a list of publications, a cover letter for the position, professional references will be appreciated)Dr. Salim FACI (salim.faci@lecnam.net), Pr. Catherine ALGANI (catherine.algani@lecnam.net), Pr. Anne-Laure BILLAERT (anne-laure.billabert@lecnam.net)

    Lire la suite

  • Polarimetric visualization of healthy brain fiber tracts for tumor delineation during neurosurgery, - LPICM, Ecole polytechnique, France

    HORAO - Polarimetric visualization of Healthy brain fiber tracts for tumor delineation during neurosurgery

    Description: Complete resection remains the first and most decisive step in treatment of most brain tumors. However, it is still difficult for the surgeon to differentiate healthy brain tissue from tumor tissue, even with state-of-the-art surgical microscopes. This, and the problem of not knowing what neurological function is inherent to a specific area of white matter visible during surgery, are risk factors for both incomplete resections and post-operative neurological deficits. With the limitations of current strategies of tumor visualization in mind, this SINERGIA consortium proposes instead to visualize and identify fibre tracts, as the absence of fibres would imply tumor tissue. In addition, seeing the spatial orientation of the tracts in the white matter will help the surgeon to determine their function (based on anatomical knowledge) and thus help to spare eloquent fibre tracts. Optical polarization has previously identified fibre tracts on thin histological sections in transmission configuration. Optical coherence microscopy shows brain fibre tracts in backscattering configuration, but requires scanning of a sample with a limited field of view. Wide-field imaging Mueller polarimetry (MP) is free of the drawbacks of the above-mentioned polarimetric techniques. Being dye-free and non-invasive, wide-field imaging MP has the potential for real-time use during surgery, as it operates in reflection and does not require sample scanning.Several rounds of preliminary exploratory tests with a custom-built multi-wavelength wide-field imaging MP on fresh animal brain tissue and formalin-fixed human brain conducted at the Ecole Polytechnique were very encouraging as fibres could not only be very well delineated, but also showed the spatial orientation of the fibre tracts. Consecutive analyses in the near in vivo Lab at UHB confirmed these results in human surgical specimens. In our latest round of tests we were able to demonstrate the reliability of MP in more challenging, surgery-like settings and to reliably identify distinct fibre tracts in the Mammal brain.The aim of the proposed project is to further test and refine the imaging MP for the purpose of brain surgery up to the point where it can be applied in a clinical setting. Read more

    Work location:
    LPICM Laboratoire de Physique des Interfaces et Couches Minces
    CNRS, Ecole polytechnique
    91128 Palaiseau
    FRANCE

    Job offers and the details of application procedure: JOIN US | HORAO

    Lire la suite

  • Enseignante-chercheure ou Enseignant-chercheur en photonique à Palaiseau (91) - Télécom Paris

    CDI - Enseignante-chercheure ou Enseignant-chercheur en photonique

    Description :

    Le poste est à pourvoir au sein du groupe Télécommunications Optiques (GTO) du département Communications et Électronique (COMELEC).
    Le groupe GTO mène des recherches sur les communications à très haut débit, les architectures des réseaux optiques, les composants optiques semi-conducteurs, la photonique intégrée et les capteurs à fibres optiques. Le groupe est également bien positionné sur les communications et les technologies quantiques.

    Dans ce cadre, nous recherchons une ou un candidat.e ayant une orientation de recherche pluridisciplinaire liée au domaine susmentionné. La personne recrutée devra mettre en place un programme de recherche ambitieux, participer aux enseignements à Télécom Paris, s'insérer dans les programmes Masters du pôle scientifique Saclaysien, et contribuer au service de l'institution et de la profession.
    Seront prioritairement examinés les candidat(e)s ayant une forte expertise en photonique expérimentale principalement dans les domaines :
    1) Technologies quantiques pour les communications optiques et 2) Intelligence artificielle en photonique, décrits ci-après. Cependant, les candidatures présentant des dossiers académiques exceptionnels et couvrant les autres domaines d'activités du groupe seront également examinés avec attention. L’innovation, l’originalité et le potentiel du candidat seront aussi fortement appréciés. Lire la suite

     

    Adresse du poste :
    Télécom Paris
    19 Place Marguerite Perey
    91120 Palaiseau
    France

    Pour postuler : 

    Contact : Frédéric Grillot (frederic.grillot@telecom-paris.fr)

  • Ingénieur de recherche CDD (H/F) 9 mois en optique biomédicale à Marseille (13) - Institut Fresnel

    Ingénieur de recherche en optique biomédicale (CDD 9 mois H/F)

    Description : Dans le contexte applicatif de la chirurgie thyroïdienne assistée (thyroïdectomie) (voir le résumé du projet ci-dessous), vous participerez au développement d'un dispositif expérimental d'imagerie par contraste laser (LSCI). Cela comprendra la mise en place et le test d'un dispositif d'illumination laser et d'un système d'imagerie à contraste speckle. Basé sur l'utilisation de fantômes artificiels de tissus biologiques diffusants, ce dispositif sera d'abord testé sur un échantillon fixe, puis les mesures de vélocimétrie seront validées à l'aide d'un échantillon en déplacement contrôlé. Ces premières étapes nous permettront d'optimiser les temps d'acquisition des images en fonction des vitesses d'écoulement attendues dans les cas cliniques typiques.
    Ensuite, vous serez chargé de développer un modèle physique de "fantôme" de tissu vascularisé à l'aide d'un réseau microfluidique, en essayant de reproduire de la manière la plus réaliste possible un tissu biologique absorbant et diffusant, contenant un réseau circulatoire subsurfacique. Une fois ce banc d'essai construit, l'imageur prototype du LSCI sera adapté pour effectuer une série de mesures de test sur cet échantillon réaliste de tissu vascularisé. Enfin, vous aurez l'opportunité de participer au premier test clinique sur tissu humain à l'Hôpital Européen qui nécessitera l'adaptation du dispositif aux contraintes d'utilisation en salle d'opération stérile. Lire la suite

    Adresse du poste :
    Institut Fresnel
    Faculté des Sciences - Avenue Escadrille Normandie-Niémen
    13397 Marseille CEDEX
    France

    Pour postuler (CV, relevés de notes, copies de diplômes, contacts/références des encadrants de stages)Julien FADE (julien.fade@fresnel.fr)

    Lire la suite

Aucun élément à afficher