Contrats post-doctoraux

  • Ingénieur/Chercheur CDD (H/F) 12 mois en physique à Paris (75) - C2RMF

    Ingénieur/Chercheur en physique - Développement logiciel de représentation et de traitement de spectre de la LIBS : de Reconnaissance Automatique et de Simulation (CDD 12 mois H/F)

    Description : Le projet de recherche L2-R.A.S. associe le C2RMF (Centre de recherche et de conservation des musées de France), le laboratoire SATIE de Cergy Paris université et le LAPA (CEA). La technique LIBS (Laser-induced breakdown spectroscopy) ou spectrométrie d’émission plasma induit par laser a été mise en évidence dès 1962 juste après l’invention du laser par Théodor Maiman. Il s’agit de focaliser un laser sur un matériau afin de créer un plasma thermique pour en recueillir l’émission atomique. Ainsi la composition élémentaire peut en être déduite voire identifier des fragments moléculaires d’origine de matière organique ou de recombinaison. Sa mise en œuvre est simple, et quasi instantanée mais l’analyse du spectre d’émission optique peut s’avérer rapidement complexe, sensible aux éléments traces et sa quantification difficile si le matériau analyser est multi-structuré ou pollué. L’objectif de ce travail de recherche vise, en intégrant les bases de données spectroscopiques existantes (théoriques et expérimentales), à poursuivre trois objectifs encore aujourd’hui mal maîtrisés. Le premier est de trouver des solutions techniques et mathématiques multimodales efficaces pour identifier, quel que soit le matériel de spectroscopie utilisé, les atomes ou fragments de molécules contenus dans le matériau issu de l’émission du plasma allant des éléments majeurs aux éléments traces (ppm environ). Le second sera de déterminer sur la base de cette identification les conditions de température du plasma généré sur la base d’un outil de simulation visant à vérifier les résultats obtenus. Et, enfin, le dernier est de se rapprocher, au travers de méthode d’intelligence artificielle, réseaux de neurones ou méthodes chimio-métriques et spectroscopiques, d’une nouvelle approche de quantification. Le contexte visé doit pouvoir s’appliquer aux matériaux complexes et multi-structurés du patrimoine afin de pouvoir les décrire en deux ou trois dimensions de façon quantitative, tels les matériaux en aluminium du patrimoine aéronautique ou les aciers archéologiques issus des problématiques patrimoniaux. Lire la suite

    Adresse du poste :
    Centre de Recherche et de Restauration des Musées de France
    14 Quai François Mitterrand
    75001 Paris

    Contacts : Xueshi Bai (xueshi.bai@culture.gouv.fr), Vincent Detalle (vincent.detalle@cyu.fr) 

  • Doctoral position on image reconstruction for ultrasound modulated optical tomography in Orsay (91) - BioMaps

    Doctoral position on image reconstruction for ultrasound modulated optical tomography (3 years)
    Starting: september 2024

    Description: Local optical properties of a biological tissue can provide useful information to improve medical diagnosis. However, non-invasive optical imaging deep inside the tissue remains a challenge, because of strong light scattering. The use of the acousto-optic effect between the light and the ultrasound (US) was proposed as a solution to achieve high-resolution images of optical contrast deep inside the tissue: US modulated optical tomography (UOT). So far, UOT was developed on experimental optical bench with focus US, requiring several minutes for data acquisition. The challenge for a clinical use of UOT is the acceleration of the data acquisition by one order of magnitude without degradation of the signal-to-noise ratio. Read more

    Work location:
    Multimodal Biomedical Imaging Laboratory (BioMaps)
    University of Paris-Saclay / French Atomic Energy Commission (CEA) / CNRS / INSERM
    Orsay, France

    Application procedure (CV and cover letter)Claude Comtat (claude.comtat@universite-paris-saclay.fr) and François Ramaz (francois.ramaz@espci.fr)

  • Postdoctoral contract in Optics in Hong Kong (HK) - Hong Kong Polytechnic University

    2-year Post-doctoral fellowhip

    Description: The ITF-funded project: Towards an Intelligent Eyeglass with Autocorrection, hosted by The Hong Kong Kong Polytechnic University (QS ranking: 65th), is inviting applications for a 2-year postdoctoral contract to develop smart adaptive eyeglasses combining a wearable optics visual analyzer and adaptive corrective focus. The smart adaptive eyeglass aims to capture the natural accommodative dynamics in real-world environments and provide in-depth adaptive optics adjustment for visual training and correction of accommodative deficiencies in presbyopic and low-vision populations.
    The candidate will join an international team of experts in the field of Optics (Dr. Alexander Goncharov, Dr Charles-Edouard Leroux, Dr Elie De Lestrange-Anginieur), Visual Science (Dr Elie De Lestrange- Anginieur, Prof. Allen Cheong, Prof George Woo), and Electronics (Prof Eric Cheng) including:
    • The School of Optometry (Home | School of Optometry (polyu.edu.hk) and the Department of Electrical and Electronic Engineering Home | Department of Electrical and Electronic Engineering (polyu.edu.hk) at the Hong Kong Polytechnic University,
    • the MIPA laboratory Laboratoire MIPA – Mathématiques, Informatique, Physique et Applications (unimes.fr) at the University of Nimes and,
    • the Applied Optics group Applied Optics group Applied Optics - University of Galway (nuigalway.ie) at the University of Galway.
    As a member of the ITF-project, the postdoctoral candidate will be primarily based in Hong Kong. He/She will work at the School of Optometry – an international research center recognized for its high impact research on refractive anomalies and age-related ocular diseases. The appointee is expected to develop the optomechanical design of the corrective lens system.
    The development will involve designing, building, and testing the optics and mechanical housing of the adaptive lens, and contributing to its optomechanical integration into the adaptive optics visual analyzer. Read more

    Work location:
    Hong Kong Polytechnic University
    11 Yuk Choi Road
    Hung Hom, Kowloon
    Hong Kong

    Applicatipn procedure (resume): Elie De Lestrange-Anginieur (elie.delestrangeanginieur@polyu.edu.hk)

  • Postdoctoral position (2 years) on acousto-optical imaging in Paris (75) - Institut Langevin ESPCI

    Novel laser sources and real-time detection for in-vivo acousto-optic imaging
    Starting september/october 2024

    Description: Imaging biological tissue with light is a great challenge for the detection of objects (e. g. tumors) at large depth (>cm), since multiple scattering processes prevent from a conventional imaging. The combination of ultrasound (US) and light within the medium allows to retrieve an optical information guided by the ultrasound beam, ballistic at medical application frequencies, e.g. 6MHz. Such a strategy is called Acousto-Optic Imaging (AOI), also called Ultrasound Optical Tomography (UOT), it is based on the acousto-optic effect (AO). Such an imaging is developed by many teams worldwide, in the scope to develop a bi-modal system for Medicine and Biology, in combining complementary contrast with ultrasound (e.g. conventional B-Mode imaging) and light. Many architectures have been studied up to now, but technological bottlenecks remain in order to go beyond a proof of principle. This is due to the weakness of the acousto-optic signal, itself superimposed on a strong speckle background. Among the various techniques developed at Institut Langevin, digital holography is a promising configuration for the detection, using a CMOS camera with a large number of pixels, while data treatment is optimzed with a GPU acquisition scheme. Original US-excitations are used in order to optimize the number of photons tagged by the US. Such a point will be developed by the candidate with a new fully-programmable US-system. Read more

    Work location:
    The work will be shared between the Institut Langevin (Paris) and the Laboratoire Charles Fabry (Palaiseau)

    ContactFrançois Ramaz (francois.ramaz@espci.fr)

  • Postdoctoral position (2 years) on Full-field multispectral Mueller in Palaiseau (91) - LPICM

    Full-field multispectral Mueller polarimetric imaging for improved surgery of neurological malignancies

    Description: Surgery is the crucial step in the treatment of brain tumors, in particular gliomas. While some well-defined tumors, such as metastases, can be removed en bloc, the majority of gliomas, which tend to grow infiltrative in the white matter of brain, are removed in piecemeal. During the surgery, it is essential to identify and respect the boundary between brain tumor and surrounding healthy brain tissue in order to carry out a radical resection of the pathological parts while preserving neurological function. However, solid tumor tissue is often difficult to differentiate from infiltrated white matter during surgery, even using a state-of-the-art intraoperative microscope. A non-complete tumor resection due to poor visualization of tumor margins leads to a worse prognosis for the patients, as the tumors invariably grow back from the remnants. Several imaging techniques (e.g. fluorescence imaging, ultrasound and magnetic resonance imaging) have been implemented for the intraoperative visualization of brain tumors tissue, but all have some drawbacks. In summary, the efforts to visualize brain tumor and reliably identify the interface between healthy and pathological areas during neurosurgery have so far failed for many intrinsic brain tumors. Read more

    Work location:
    Laboratoire de Physique des Interfaces et des Couches Minces
    Ecole polytechnique
    Route de Saclay
    91128 Palaiseau
    France

    ContactAngelo Pierangelo (angelo.pierangelo@polytechnque.edu), Tatiana Novikova (tatiana.novikova@polytechnique.edu)

  • Postdoctoral position (2 years) on acousto-optic imaging in Paris (75) - Institut Langevin ESPCI Paris

    Novel laser sources and real-time detection for in-vivo acousto-optic imaging

    Description: Imaging biological tissue with light is a great challenge for the detection of objects (e. g. tumors) at large depth (>cm), since multiple scattering processes prevent from a conventional imaging. The combination of ultrasound (US) and light within the medium allows to retrieve an optical information guided by the ultrasound beam, ballistic at medical application frequencies, e.g. 6MHz. Such a strategy is called Acousto-Optic Imaging (AOI), also called Ultrasound Optical Tomography (UOT), it is based on the acousto-optic effect (AO). Such an imaging is developed by many teams worldwide, in the scope to develop a bi-modal system for Medicine and Biology, in combining complementary contrast with ultrasound (e.g. conventional B-Mode imaging) and light. Many architectures have been studied up to now, but technological bottlenecks remain in order to go beyond a proof of principle. This is due to the weakness of the acousto-optic signal, itself superimposed on a strong speckle background. Among the various techniques developed at Institut Langevin, digital holography is a promising configuration for the detection, using a CMOS camera with a large number of pixels, while data treatment is optimzed with a GPU acquisition scheme. Original US-excitations are used in order to optimize the number of photons tagged by the US. Such a point will be developed by the candidate with a new fully-programmable US-system. Read more

    Work location:
    Institut Langevin ESPCI Paris - CNRS UMR 7587
    1 rue Jussieu
    75005 Paris
    France

    ContactFrançois RAMAZ (francois.ramaz@espci.fr)

  • Doctoral contract in Visual Optics in Hong Kong (HK) - Hong Kong Polytechnic University

    3-year Doctoral contract in Visual Optics

    Description: The ITF-funded project: Towards an Intelligent Eyeglass with Autocorrection, hosted by The Hong Kong Kong Polytechnic University (QS ranking: 65th), is inviting applications for a 3-year doctoral contract to develop a smart adaptive eyeglasses combining a wearable optics visual analyzer and an adaptive corrective focus. The smart adaptive eyeglass aims to capture the natural accommodative dynamics in real-world environments and provide in-depth adaptive optics adjustment for visual training and correction of accommodative deficiencies in presbyopic and low-vision populations.
    The candidate will join an international team of experts in the field of Optics (Dr. Alexander Goncharov, Dr Charles-Edouard Leroux, Dr Elie De Lestrange-Anginieur), Visual Science (Dr Elie De Lestrange- Anginieur, Prof. Allen Cheong, Prof George Woo), and Electronics (Prof Eric Cheng) including:
    • The School of Optometry (Home | School of Optometry (polyu.edu.hk) and the Department of Electrical and Electronic Engineering Home | Department of Electrical and Electronic Engineering (polyu.edu.hk) at the Hong Kong Polytechnic University,
    • the MIPA laboratory Laboratoire MIPA – Mathématiques, Informatique, Physique et Applications (unimes.fr) at the University of Nimes and,
    • the Applied Optics group Applied Optics group Applied Optics - University of Galway (nuigalway.ie) at the University of Galway.
    As a member of the ITF-project, the doctoral candidate will be primarily based in Hong Kong. His/her degree will be delivered by the School of Optometry – an international research center recognized for its high-impact research on refractive anomalies and age-related ocular diseases.
    The appointee is expected to design the optics of adaptive eyeglasses, develop wavefront sensing systems integrated into the eyeglasses, and build an adaptive control system for real-time adjustment of the wearer’s focus. Read more

    Work location:
    Hong Kong Polytechnic University
    11 Yuk Choi Road
    Hung Hom, Kowloon
    Hong Kong

    Applicatipn procedure (resume): Elie De Lestrange-Anginieur (elie.delestrangeanginieur@polyu.edu.hk)

  • Ingénieur de recherche CDD (H/F) 9 mois en optique biomédicale à Marseille (13) - Institut Fresnel

    Ingénieur de recherche en optique biomédicale (CDD 9 mois H/F)

    Description : Dans le contexte applicatif de la chirurgie thyroïdienne assistée (thyroïdectomie) (voir le résumé du projet ci-dessous), vous participerez au développement d'un dispositif expérimental d'imagerie par contraste laser (LSCI). Cela comprendra la mise en place et le test d'un dispositif d'illumination laser et d'un système d'imagerie à contraste speckle. Basé sur l'utilisation de fantômes artificiels de tissus biologiques diffusants, ce dispositif sera d'abord testé sur un échantillon fixe, puis les mesures de vélocimétrie seront validées à l'aide d'un échantillon en déplacement contrôlé. Ces premières étapes nous permettront d'optimiser les temps d'acquisition des images en fonction des vitesses d'écoulement attendues dans les cas cliniques typiques.
    Ensuite, vous serez chargé de développer un modèle physique de "fantôme" de tissu vascularisé à l'aide d'un réseau microfluidique, en essayant de reproduire de la manière la plus réaliste possible un tissu biologique absorbant et diffusant, contenant un réseau circulatoire subsurfacique. Une fois ce banc d'essai construit, l'imageur prototype du LSCI sera adapté pour effectuer une série de mesures de test sur cet échantillon réaliste de tissu vascularisé. Enfin, vous aurez l'opportunité de participer au premier test clinique sur tissu humain à l'Hôpital Européen qui nécessitera l'adaptation du dispositif aux contraintes d'utilisation en salle d'opération stérile. Lire la suite

    Adresse du poste :
    Institut Fresnel
    Faculté des Sciences - Avenue Escadrille Normandie-Niémen
    13397 Marseille CEDEX
    France

    Pour postuler (CV, relevés de notes, copies de diplômes, contacts/références des encadrants de stages)Julien FADE (julien.fade@fresnel.fr)