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formation of the magneto-electric coupling, Eq. 24, should be

ξ= v
e′μ′ − 1/c20
1− e′μ′v2

"In addition, in the expressions for the transformation of the
permittivity and permeability, Eqs. 21 and 22, cm should be re-
placed by c0: Note that in our units c0 = 1, and v is also assumed
to be normalized by the speed of light.
"With that set of equations (21, 22, and the amended version

of 24), the parameters of the equivalent moving medium (e′, μ′
and vD) can be rederived. To second order in the modulation
strength, α, the resulting expressions yield the same as Eqs. 25
and 26 in the main text, with the exception of a prefactor in the
drag velocity,

vD ≈−α2
1

c−20 − c−2m
( 2gΩ
c2mg2 −Ω2):

"The above equation for the drag velocity is naturally ill-defined
for cm = 1, as this implies the modulation of a vacuum. The above
changes do not change any of the conclusions in the paper.”
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A moving medium drags light along with it as measured by Fizeau
and explained by Einstein’s theory of special relativity. Here we
show that the same effect can be obtained in a situation where
there is no physical motion of the medium. Modulations of both
the permittivity and permeability, phased in space and time in the
form of traveling waves, are the basis of our model. Space–time
metamaterials are represented by effective bianisotropic param-
eters, which can in turn be mapped to a moving homogeneous
medium. Hence these metamaterials mimic a relativistic effect
without the need for any actual material motion. We discuss how
both the permittivity and permeability need to be modulated to
achieve these effects, and we present an equivalent transmission
line model.

metamaterials | space–time modulations | Fresnel drag | nonreciprocity

In 1818 Fresnel produced the aether drag hypothesis: A mov-
ing fluid appears to “drag” light along so that light traveling in

opposite directions to the fluid flow would have different veloc-
ities (1). His extra velocity was related to but not equal to the
velocity of the fluid. Although Fresnel’s derivation was flawed,
Fizeau in 1851 measured the drag effect and confirmed Fresnel’s
formula (2). A correct explanation followed in the wake of Ein-
stein’s theory of relativity, of which the aether drag experiment is
one of the cornerstones (3).

While it may seem that physical movement of the fluid is an
essential part of aether drag (4, 5), here we come to the surprising
conclusion that a time-dependent system involving no physical
movement of a medium can also produce a drag effect. We calcu-
late the shifted dispersion surface and show that the system can
be represented as a bianisotropic metamaterial (Fig. 1), whose
magnetoelectric coupling vanishes when either the dielectric or
the magnetic modulation is switched off. Finally we propose a
simple experiment which would demonstrate our results.

We consider a metamaterial whose permittivity and perme-
ability are modulated in space and time following a traveling-
wave form,

ε(x , t) = εm [1 + 2αe cos(gx −Ωt)], [1]
µ(x , t) =µm [1 + 2αm cos(gx −Ωt)], [2]

where g and Ω are the spatial and temporal frequencies, αe,m

are the electric and magnetic modulation strengths, and εm and
µm are the background relative permittivity and permeability of
the medium. The profile moves with a phase velocity of cg = Ω/g
but we emphasize that the medium itself does not move: As a
consequence the phase velocity can take any value between zero
and infinity without violating special relativity. We concern our-
selves with low-frequency, long-wavelength excitations, enabling
the medium to be represented as a metamaterial with effective
medium parameters which we calculate. Importantly, the drift
velocity appearing in space–time metamaterials differs from both
the modulation phase velocity and the conventional Fresnel–
Einstein result, and it can even oppose the modulation phase
velocity, when this is lower than the speed of light cm in the
unmodulated medium.

Modulation of the electric permittivity in space and time has
attracted much attention, as it gives rise to a plethora of exotic

effects ranging from frequency-momentum transitions (6–8) to
compression and amplification of electromagnetic signals (9–15),
one-way hyperbolic metasurfaces (16), and even non-Hermitian
and topological phenomena (17–21). The directionality of space–
time modulations such as traveling-wave modulations breaks
time-reversal symmetry, which is reflected in nonreciprocal band
diagrams (4). The breaking of reciprocity has been exploited in the
realization of photonic isolators and circulators without the need
of external static magnetic biasing (22–24). Recently, it was shown
that in-phase modulations of the permittivity and the permeability
with the same strength result in the closing of the high-frequency
band gaps, at the same time as keeping the nonreciprocal char-
acter of these systems (25). Here we further show that this non-
reciprocity is in fact accompanied by a Fresnel drag and we present
an effective medium model that illuminates its origin.

Results and Discussion
Effective Medium Theory of Space–Time Metamaterials. Maxwell’s
equations in space–time-modulated media,

∇×E =−∂B
∂t

=− ∂

∂t
[µ(x , t)µ0H], [3]

∇×H =
∂D
∂t

=
∂

∂t
[ε(x , t)ε0E], [4]

with ε0 and µ0 determining the speed of light in vacuum as c0 =
1/
√
ε0µ0, can be solved by taking a Bloch–Floquet ansatz (9),

E =
∑
n

Ene
i(k+ng)x+ikyy−i(ω+nΩ)t , [5]

H =
∑
n

Hne
i(k+ng)x+ikyy−i(ω+nΩ)t , [6]
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Fig. 1. Fresnel drag in space–time-modulated metamaterials. (A) A wave
propagates in a medium with space–time traveling-wave–modulated per-
mittivity and permeability. The wave vectors k and ky are along the direction
of the space–time grating and orthogonal to it, respectively. (B) Sketch of
the low-frequency dispersion surface in the (k, ky ) plane. The isofrequency
contours are ellipses centered at a finite value of k, reflecting a Fresnel
drag effect along the modulation direction. (C) In the long-wavelength
limit the space–time-modulated medium is mapped into a magnetoelectric
medium with anisotropic effective permittivity ε̂eff, permeability µ̂eff, and
magnetoelectric coupling ζ̂eff parameters. (D) Equivalent moving medium
interpretation: uniaxial medium with anisotropic effective permittivity ε̂′eff
and permeability µ̂′eff moving with velocity vD. Notice that the direction of
the drift velocity in D corresponds to the case of subluminal modulations
(cmg<Ω), and it flips sign in the superluminal regime (cmg>Ω).

with ω the wave frequency and k and ky the wave vectors as
defined in Fig. 1. Assuming an s-polarized wave without loss
of generality, this procedure leads to a system of equations for
the Ez and Hy components of the electromagnetic fields. An
eigenvalue equation can be written as

k

[
E
H

]
=

[
MEE MEH

MHE MHH

][
E
H

]
, [7]

where E and H now stand for column vectors of the Bloch–
Floquet amplitudes of Ez and Hy , respectively. The block matri-

ces in Eq. 7 depend on ω and satisfy MEE = MHH and their
expressions are given in Materials and Methods.

It is useful to rewrite the eigenvalue equations on the basis of
forward and backward propagating waves as follows:

k

[
E + H
E−H

]
=

[
M++ M+−

−M+− M−−

][
E + H
E−H

]
. [8]

Here, M
++
−−= MEE ± 1

2

(
MEH + MHE

)
and M+−=− 1

2

(
MEH −

MHE
)
. Solving Eq. 8 yields the dispersion relation of the

system, k(ω).
In the long-wavelength limit, the dispersion relation can be

written analytically by considering only 3 neighboring modes
in the eigenvalue equation and approximating ω�Ω, k� g .
This gives

β2ω2 =κ2k2
y + (k − δω)2, [9]

where

β2 = c−2
m

(
1 +α2

e
2Ω2

c2
mg2−Ω2

)(
1 +α2

m
2Ω2

c2
mg2−Ω2

)
, [10]

κ2 = 1 +α2
m

2Ω2

c2
mg2−Ω2

, [11]

δ=αeαm
2gΩ

c2
mg2−Ω2

, [12]

and c2
m = 1/εmµm . Hence the dispersion surfaces are approxi-

mately circles of radius ωβ and whose center is displaced from
the origin along the k axis by δω. This produces an asymme-
try with respect to the k = 0 axis, since the dispersion surfaces
are displaced along the direction of the modulation, as shown in
Fig. 2 and discussed below in detail.

Fresnel Drag. Here we interpret the displacement of the dis-
persion surface shown above as an aether drag, which is well
known to affect light propagating through moving media (26).
In the conventional Fresnel drag effect, moving matter drags
light, imparting an extra speed to it. Measured by Fizeau in
1851, Einstein noticed that it is a relativistic effect and that the

ω

Fig. 2. Fresnel drag in space–time ε- and µ-modulated metamaterials with αe =αm = 0.2. The isofrequency contours in the (k, ky ) plane are shown for (Left)
subluminal (cmg>Ω) and (Right) superluminal (Ω> cmg) modulations, with cm = 1. Note the change in radius compared to the dispersion in unmodulated
media (gray circles) and the displacement along the k axis. In the subluminal case, the space–time modulation drags the waves in the direction opposite
to its phase velocity (the effective drift velocity, vD, sketched in red, is antiparallel to the modulation phase velocity, cg, sketched in black), while the drift
velocity flips sign (vD parallel to cg) upon a superluminal modulation cg > cm. Note the displacement of the centers of the contours, which are plotted with
dots of the same color as the corresponding contour. The group velocity direction is given by the normal to these dispersion surfaces.
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speed of light in the medium can be calculated from Lorentz’s
velocity formula. While it may seem that moving matter is
needed to produce a Fresnel drag, our results show that it
can also emerge in the presence of space–time modulations,
where the modulation profile appears to be moving at a cer-
tain speed despite the absence of moving matter. This surprising
result can be understood from our effective medium theory. In
fact, as we show below, the space–time-modulated metamaterial
can be equivalently represented by a moving medium, which
explains the light-dragging effect. Interestingly, the effective drift
is present as long as δ 6= 0; i.e., αe ·αm 6= 0 and g ·Ω 6= 0. In other
words, the Fresnel drag in space–time metamaterials emerges
when both the permittivity and permeability are modulated
and when the modulations have nonzero spatial and temporal
frequencies.

The isofrequency contours given by Eq. 9 are shown in Fig. 2
for 2 examples of space–time metamaterials: with subluminal
(Fig. 2, Left) and superluminal (Fig. 2, Right) modulation speeds.
The modulation strength is chosen in both cases as αe =αm =
0.2 such that the permittivity and permeability are equally modu-
lated. For comparison, we also show the isofrequency contours of
unmodulated media (ω2/c2

m = k2 + k2
y ; Fig. 2, gray lines). Here

and in all of the results shown in the paper we take εm =µm = 1,
so that cm = 1. It can be seen how in the presence of the modula-
tion, the circular contours change shape, and their center, which
is plotted as a dot of the same color as the corresponding con-
tour, gets displaced along the k axis. This shows the Fresnel drag
in space–time metamaterials. Interestingly, when the modulation
speed is subluminal, the isofrequency contours are displaced in
the direction of the modulation’s phase velocity (Fig. 2, Left).
On the other hand, when the modulation is superluminal, the
contours are displaced in the direction opposite to the modu-
lation’s phase velocity (Fig. 2, Right). In other words, given a
space–time variation of ε and µ, the direction of the Fresnel drag
can be switched by changing between subluminal and superlumi-
nal modulations. Remarkably, this implies that the direction of
the Fresnel drag velocity is antiparallel to the phase velocity of
the modulation in the subluminal case and parallel to it in the
superluminal case. This seemingly counterintuitive fact is fully
justified below.

In addition, the extent of the Fresnel effect in these media
depends on the magnitude of the modulation speed. It increases
as cg increases from cg = 0 in the subluminal regime and as
cg decreases from ∞ in the superluminal regime. As the lumi-
nal modulation regime cg→ cm is approached, however, strong
interaction between multiple bands results in an unstable regime
dominated by intraband photonic transitions (9, 15), which
spoils the separation of length scales needed for long-wavelength
homogenization.

Effective Bianisotropic Parameters and Nonreciprocity. Next we
derive the effective medium parameters of the space–time meta-
material. We start by noting that the dispersion relation of waves
in the space–time-modulated medium, Eq. 9, is of the form of
the dispersion of waves in a bianisotropic medium with uniaxial
ε and µ,

ε=

εx 0 0
0 ε 0
0 0 ε

; µ=

µx 0 0
0 µ 0
0 0 µ

, [13]

and magnetoelectric coupling,

ξ = ζT =

0 0 0
0 0 +ξ
0 −ξ 0

. [14]

For s-polarized waves we have in this case

µµ0εε0ω
2 =

µ

µx
k2
y + (k − ξω)2. [15]

By comparing to Eq. 9 we can identify a set of effective medium
parameters for the space–time-modulated metamaterial,

εx =µx = 1, [16]

ε= 1 +α2
e

2Ω2

c2
mg2−Ω2

, [17]

µ= 1 +α2
m

2Ω2

c2
mg2−Ω2

, [18]

ξ=αeαm
2gΩ

c2
mg2−Ω2

. [19]

This shows that the modulated medium can be represented
by an effective bianisotropic material. Interestingly, the mag-
netoelectric coupling vanishes if the modulation is only spatial
(Ω = 0) or only temporal (g = 0) or if only one of the electromag-
netic parameters is modulated; i.e., αe ·αm = 0. We also note in
passing that space–time metamaterials with only ε or µ modula-
tions are mapped to uniaxial media (without any magnetoelectric
coupling).

The magnitude of ξ is presented in Fig. 3, as a function of
the electric and magnetic modulation strengths. When chang-
ing from a subluminal (Fig. 3, Left) to a superluminal (Fig. 3,
Right) modulation speed, the magnetoelectric coupling changes
sign, in agreement with the reverse directions obtained for the
Fresnel drag. In addition, we can conclude from this plot that
a phase difference of π between the ε and µ modulations also
reverses the direction of the aether drag with respect to in-phase
modulations, since ξ changes sign with sign(αe ·αm).

In agreement with the effective bianisotropic parameters, the
dispersion surfaces shown in Fig. 2 represent nonreciprocal dis-
persion relations, a result of the time-reversal symmetry break-
ing induced by the modulation. From Eq. 9 we can explicitly
write dispersion relations for forward and backward propagating
waves,

k±= δω±
√
β2ω2−κ2k2

y . [20]

Clearly, when δ 6= 0 (ξ 6= 0), the 2 branches are asymmetric with
respect to k = 0; that is, the system is nonreciprocal when both

Fig. 3. Nonreciprocity map in the αe,αm parameter space for subluminal
(Left) and superluminal (Right) gratings, with cm = 1. The color map shows
effective magnetoelectric coupling, ξ, which is equal to δ and which also
gives the difference in the inverse of phase velocities between forward and
backward propagating waves, ∆ = (k+− |k−|)/ω= 2δ. It is seen that it is
necessary to modulate both parameters to achieve nonreciprocity in the
long-wavelength limit.

Huidobro et al. PNAS | December 10, 2019 | vol. 116 | no. 50 | 24945



αe and αm are nonzero. For waves traveling in the direction
of the modulation, ky = 0, it is easy to see that the difference
between the wave vectors of forward and backward waves divided
by frequency is given by ∆ = 2δ= 2ξ. Hence, we can interpret
Fig. 3 as a map of the strength of nonreciprocity. From this we
confirm that a nonreciprocal response requires both permittivity
and permeability modulations and that for a fixed total modu-
lation strength, α2

e +α2
m =α2, nonreciprocity is maximized by

αe =αm .

Equivalent Moving Medium. The link between moving media and
bianisotropic effective parameters has been shown in the past
(27, 28). Hence, since the space–time-modulated medium can be
represented by effective bianisotropic parameters, it can also be
linked to an equivalent moving medium. Below we derive the
speed of the equivalent moving medium.

Consider a moving uniaxial medium with parameters ε̂′=
diag(ε′x , ε′, ε′), µ̂′= diag(µ′x ,µ′,µ′), moving along the x axis with
speed v . Lorentz transformations tell us that in the moving frame
the permittivity and permeability change as (26)

εx = ε′x , ε= ε′
1− v2/c2

m

1− ε′µ′v2/c2
m

, [21]

µx =µ′x , µ=µ′
1− v2/c2

m

1− ε′µ′v2/c2
m

. [22]

Also, the electric and magnetic fields in the moving frame are
coupled through magnetoelectric tensors,

ξ = ζT =

0 0 0
0 0 +ξ
0 −ξ 0

, [23]

where

ξ=
v

cm

ε′µ′− 1

ε′µ′− v2/c2
m

. [24]

By mapping the tensors (21–23) to the set of effective bian-
isotropic parameters in Eqs. 16–19, we determine

vD ≈−ξc2
mε
′µ′≈−α2 2c2

mgΩ

c2
mg2−Ω2

, [25]

and

ε′=µ′≈ ε

1− v2/c2
m

≈ 1 +α2 2Ω2

c2
mg2−Ω2

, [26]

where we have restricted ourselves to the case where ε=µ, i.e.,
αe =αm =α, for simplicity. The velocity vD is the drag veloc-
ity that light experiences in the space–time metamaterial. This
justifies our interpretation of the isofrequency contours in Fig. 2
as an aether drag.

It is clear from Eq. 25 that when the modulation is sublumi-
nal (cmg >Ω), vD < 0, such that the effective medium moves
in the opposite direction to the phase velocity of the modu-
lation. Hence, forward propagating modes slow down in the
presence of subluminal space–time modulations, and backward
propagating modes speed up. On the other hand, for superlumi-
nal modulations (cmg <Ω), vD > 0, such that the drag velocity
points in the same direction as the modulation’s phase veloc-
ity. In this case, forward waves speed up and backward waves
slow down. We remark here that there are 2 effects at work
in the space–time-modulated metamaterial. In addition to the
Fresnel drag, there is an increase/reduction in the effective per-
mittivity and permeability for subluminal/superluminal media,
as can be seen in Eq. 26. Hence, the slowing down or speed-
ing up of the waves is in relation to waves propagating in the

αe = αm = 0.2

A B

ky = 0 ky = 0.15

ky = 0
ky = 0.15

ky = 0 ky = 0.15

ky = 0
ky = 0.15

αe/m = 0.2, αm/e = 0

αe = αm = 0.2

αe/m = 0.2, αm/e = 0

ω=c m
k

Fig. 4. Dispersion relations for ky = 0 and ky = 0.15, for subluminal (A) and superluminal (B) metamaterials, with cm = 1. A and B, Top show how ε and µ
traveling-wave modulations yield nonreciprocal dispersion. The permittivity and permeability modulations are set equal, αe =αm = 0.2. A and B, Bottom
show how when only one of the parameters is modulated with the same strength as before (αe = 0.2 or αm = 0.2) and the other one is kept constant
(αm = 0 or αe = 0), the system is reciprocal. The symbols (circles and squares in Top and Bottom, respectively) represent numerical results, and the solid lines
(green and blue in Top and Bottom, respectively) show analytical results in the effective medium approximation. The red lines represent the light lines.
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medium with reduced/increased effective ε or µ, rather than with
respect to cm .

Importantly, relativity imposes that the permittivity and per-
meability of a moving medium change at the same pace (21–23),
as electric and magnetic effects are intimately linked to each
other in relativity. Hence, the mapping to a moving medium can
be done only in the case of space–time modulations of both ε
and µ, whereas the moving medium interpretation fails if either
material parameter is not modulated. This is a fundamental dif-
ference between systems where only one parameter (either the
electric or the magnetic one) is modulated in space and time
and systems which feature both modulations simultaneously and
explains why the aether drag and nonreciprocity disappear for
modulations of only ε or µ.

Nonreciprocal Dispersion Relations. We now discuss in detail the
effective medium theory presented above and validate our
analytical expressions against numerical results.

The nonreciprocal dispersion relations given by Eq. 20 are
shown in Fig. 4 for a choice of nonzero electric and magnetic
modulation amplitudes αe =αm = 0.2 (Fig. 4 A and B, Top,
solid green lines). Numerical results obtained from Eq. 7 are
also plotted with symbols, validating our effective medium the-
ory. For waves propagating in the direction of the modulation
(ky = 0), the dispersion relations are linear, k±= (δ±β)ω, as
can be seen in the plot. In fact, when αe =αm , the eigenvalue
Eq. 8 becomes block diagonal because MEH =MHE , such that
M+−=M−+ = 0, reflecting the fact that forward and backward
waves do not interact in this case. Indeed this periodic system,
being impedance-matched to free space at all positions x and
times t , has zero band gaps at higher frequencies and momenta,
as discussed in ref. 25. However, despite the fact that forward
and backward waves do not interact with each other, the mod-
ulation acts on each of them, yielding a nonreciprocal response.
The speed of forward and backward waves is in fact different,
and, according to Eq. 20, it is given respectively by

v+ =
ω

k+
= cm

(
1 + 2α2 cg

cm − cg

)
−1, [27]

v−=
ω

k−
=−cm

(
1− 2α2 cg

cm + cg

)
−1. [28]

It is also clear from Eqs. 27 and 28 that for subluminal grat-
ing speeds (cg < cm), forward waves propagating through the
space–time-modulated medium speed up and backward waves
slow down, in agreement with a negative Fresnel drag velocity.
In particular, v+ < cm and |v−|> cm , such that the branch at
k > 0 lies below the light line for the unmodulated material, and
the branch at k < 0 lies above it, as can be seen in Fig. 4 A,
Top. For the case of superluminal grating speeds (cg > cm),
the speed of forward waves increases and that of backward
waves decreases, in agreement with a positive Fresnel drag
velocity. We remark here that while both velocities increase
with respect to waves propagating in the absence of modula-
tion (v+ > cm , |v−|> cm , both branches lie above the light line),
the Fresnel drag in fact acts with respect to a medium with
reduced effective permittivity and permeability (as given by Eq.
26). In the superluminal case the phase velocity of waves in
such medium is in fact reduced by a large amount, ∼Ω2, and
the reciprocity breaking term is not strong enough to move
the backward propagating branch to the opposite side of the
light line. Hence, while the drag acts in the same direction for
both sets of waves, both branches lie above the light line of
unmodulated media (Fig. 4 B, Top). These different phase veloc-
ities for forward and backward modes are consistent with the
results presented in Fig. 3, where ∆/2 = (v+

g )−1− (v−g )−1 = δ
is plotted.

On the other hand, if either the permittivity or the perme-
ability is kept constant (αe/m = 0.2, αm/e = 0), the reciprocity-
breaking term δ= 0, and the dispersion relations are fully
reciprocal in the long-wavelength limit, as shown in Fig. 4
A and B, Bottom. In this case, and for subluminal mod-
ulations, the forward/backward wave decreases/increases in
speed with respect to cm , and the dispersion relations lie
below the light lines, and conversely for superluminal modu-
lations, for which both branches lie above the light lines. The
phase velocities are given by β−1 in this case, whose devia-
tion from the unmodulated system is quantified by terms ∼
Ω2/(c2

mg2−Ω2). This explains why the effect is more pro-
nounced for superluminal (Fig. 4 B) than for subluminal
(Fig. 4 A) modulations and why for the superluminal case both
branches remain above the light line with electric and magnetic
modulations.

Finally, for off-normal incidence, ky 6= 0, the dispersion
presents a cutoff and exhibits the Fresnel drag by tilting toward
the positive k direction for subluminal modulations and toward
the negative one for superluminal modulations, in agreement
with Fig. 2.

Transmission Line Model. We propose a realization of Fresnel
drag in a transmission line comprising the discrete elements
shown in Fig 5A, which can be modeled as detailed in Materials
and Methods. We note that transmission lines have been used
to test other phenomena appearing in moving media. In partic-
ular, nonlinear inductors were used to demonstrate the inverse
Doppler effect by which waves reflect from a receding bound-
ary with an increased frequency (29). In our setup, varactors are
used, so that a strong pump signal can modulate their capaci-
tance in time, with appropriate phasing from one varactor to
another. Varactors are available with a typical capacitance of
100 pF. Both the inductive and the capacitive elements must be
modulated to see the drag effect: Ferrite-core inductors, with
inductance of the order of 1µH, are commercially available.
The ferrite core has a nonlinear response, enabling the pump
beam to vary the inductance. A powerful high-frequency pump
signal is sent through the system to produce the required mod-
ulation of the elements, ensuring that the varactors are biased
with a dc voltage greater than the modulation. Simultaneously, a
low-frequency probe tests the effect of the modulation, as illus-
trated in Fig. 5B. For the values of inductance and capacitance

A

probe frequency 

k

B photo- magnetic splitting

C

Nk 2 integer

Fig. 5. (A) The capacitor in a conventional transmission line is replaced by
a varactor, whose capacitance varies with the voltage across it. The induc-
tors are also assumed to vary with the bias current. (B) Schematic dispersion
showing the pump and probe frequencies. (C) Discrete elements combined
into a loop to demonstrate the presence of a photomagnetic field.
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quoted, the cutoff frequency of the transmission line would be
approximately 6 MHz.

One suggestion for detecting the drag is to make an anal-
ogy with the electrons confined to a loop. In the absence of
a magnetic field, nonzero angular momentum states are 2-fold
degenerate, as dictated by time-reversal symmetry. A magnetic
field breaks this symmetry and splits the formerly degenerate
states. Fig. 5C shows the configuration. The loop quantizes the
states, and the space–time modulation of the elements produces
an effective gauge field for photons (30), resulting in a split-
ting of opposite-propagating modes, in analogy with the Zeeman
splitting in atomic physics (24, 31).

In summary, we have shown that space–time-modulated sys-
tems can, in the low-frequency limit, be represented as bian-
isotropic metamaterials or alternatively as uniaxial metamateri-
als in motion relative to the observer’s reference frame. In the
latter case we claim that this is an instance of Fresnel’s aether
drag hypothesis but with the interesting twist that modulations
of the system do not displace the physical medium itself and the
motion is apparent rather than real. Further, the velocity of the
modulations, cg , is only indirectly related to the drag velocity, vD ,
whose sign and magnitude can be changed by the size and relative
phase of the electric and magnetic modulation amplitudes. Our
system presents a rich variety of phenomena with parameters
that are highly tunable.

We mention in passing that we expect realizations in other
wave phenomena, such as acoustics, where both density and bulk
modulus need to be modulated to achieve a Willis stress–velocity
coupling parameter in the homogenization regime (32), to be
possible. Finally, we suggest an electronic circuit model as a
possible test bed for these ideas.

Materials and Methods
Matrices in the Bloch–Floquet Method. The matrices in the eigenvalue
equation, Eq. 7, are given by

MEE
n′n = MHH

n′n =−ngδnn′ , [29]

MHE
n′n =−ε0


(ω+ nΩ)δnn′ − k2

y c2
m

(
SEH

n′n

)
−1

+αe(ω+ nΩ)(δn+1,n′ + δn−1,n′ )
+αeΩ(δn+1,n′ − δn−1,n′ )

 , [30]

MEH
n′n =−µ0


(ω+ nΩ)δnn′

+αm(ω+ nΩ)(δn+1,n′ + δn−1,n′ )
+αmΩ(δn+1,n′ − δn−1,n′ )

 , [31]

with

SEH
n′n =


(ω+ nΩ)δnn′

+αm(ω+ nΩ)(δn+1,n′ + δn−1,n′ )
+αmΩ(δn+1,n′ − δn−1,n′ )

 . [32]

Transmission Line. The elements in the transmission line in Fig. 5 vary in
time as

Cn(t) = B1

[
1 +α1

(
e+i(Ωt+θn )

+ e−i(Ωt+θn )
)]
−1, [33]

Ln(t) = B2

[
1 +α2

(
e+i(Ωt+θn )

+ e−i(Ωt+θn )
)]
−1
. [34]

Solving the equations

V̇n = C−1
n (In− In+1), [35]

İn+1 = L−1
n+1(Vn−Vn+1), [36]

it can be proved that our transmission line model reproduces the Fresnel
drag when both elements are modulated.

Data Availability. All of the data are included in this paper.

ACKNOWLEDGMENTS. P.A.H. acknowledges funding from Fundação para
a Ciência e a Tecnologia and Instituto de Telecomunicações under Projects
CEECIND/03866/2017 and UID/EEA/50008/2019. P.A.H. and R.V.C. acknowl-
edge funding from the Leverhulme Trust. E.G. is supported through a
studentship in the Center for Doctoral Training on Theory and Simula-
tion of Materials at Imperial College London funded by the Engineering
and Physical Sciences Research Council (EPSRC) (EP/L015579/1). S.G. and
R.V.C. acknowledge support from the EPSRC Program Grant EP/L024926/1.
J.B.P. acknowledges funding from the Gordon and Betty Moore Founda-
tion. Funding from Fundação para a Ciência e a Tecnologia and Instituto
de Telecomunicações under project UIDB/50008/2020 and by the CEEC
Individual program with reference CEECIND/02947/2020 is acknowledged.

1. A. Fresnel, Lettre d’Augustin Fresnel à François Arago sur l’influence du mouve-
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