JCOM 2016, Nice, vendredi 10 juin 2016

Génération de peignes de fréquences arbitraires par auto-imagerie temporelle et spectrale

Hugues Guillet de Chatellus, Luis Romero Cortés, et José Azaña

LIPHY, CNRS/UGA, SAINT MARTIN D'HÈRES, FRANCE EMT-INRS, VARENNES, QC, CANADA

Applications des peignes de fréquences

N. R. Newbury, Nat. Photon. (2011)

Peignes de fréquences : ISL contraint par la longueur d'une cavité résonnante

- ➔ pas d'accordabilité de l'ISL
- → l'ISL est généralement compris entre 80 et 300 MHz

→ Limite pour un certain nombre d'applications

Génération de peignes de fréquence d'ISL arbitraire

→ Principe :

→ Plan :

- 1. Principe de l'auto-imagerie, application à la génération d'ISLs arbitraires
- 2. Démonstration expérimentale

Effet Talbot spatial (auto-imagerie)

- Effet Talbot entier : $\mathbf{d} = p z_T$
- Effet Talbot fractionnaire : $d = \frac{p}{a} z_T$ ۲

Interprétation :

(λ**)**

Modulation de phase quadratique dans le domaine dual de Fourier (\widetilde{x})

Généralisation

Effet Talbot temporel : multiplication du taux de répétition

1672 OPTICS LETTERS / Vol. 24, No. 23 / December 1, 1999

Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings

José Azaña and Miguel A. Muriel

Tecnología Fotónica, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, E28040 Madrid, Spain

→ Effet Talbot spectral : division de l'ISL par un entier

Discretely tunable comb spacing of a frequency comb by multilevel phase modulation of a periodic pulse train

Antonio Malacarne^{*} and José Azaña

Institut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications - INRS-EMT Montréal (Québec), Canada *antonio.malacarne@ircphonet.it

 #182160 - \$15.00 USD
 Received 19 Dec 2012; revised 23 Jan 2013; accepted 26 Jan 2013; published 11 Feb 2013

 (C) 2013 OSA
 25 February 2013 / Vol. 21, No. 4 / OPTICS EXPRESS 4139

Généralisation de l'effet Talbot spectral

Mise en œuvre expérimentale

Exemple: multiplication de l'ISL par un facteur 100:

Pour *ISL* = 80 MHz, requiert 500000 km de propagation (SMF28)

- Développement de lignes dispersives (INRS-COPL)
- ➔ Utilisation d'un laser FSF

Faisable avec un EOPM et un AWG

Démonstration dans un laser FSF injecté

→ Système défini par deux paramètres f_s et $f_c = 1/\tau_c$.

- → Spectre résultant : peigne de fréquences, d'ISL f_s .
- → Calcul du champ électrique

$$E(t) = \sum_{n} E_{n}(t) = E_{0} \sum_{n} g(n)e^{-i2\pi(f_{0}+nf_{s})t}e^{i2\pi\left(nf_{0}+\frac{n(n+1)}{2}f_{s}\right)\tau_{c}}$$

$$\Rightarrow \text{ Phase spectrale quadrat}$$

ique

H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, Theory of Talbot lasers, Phys. Rev. A, 88, 033828 (2013).

Effet Talbot temporel dans un laser FSF

Laser FSF injecté fibré : $f_c = 13,13$ MHz

Spectre optique :

Montage expérimental

Résultats (1)

Multiplication de l'ISL par 100 (amplification entière).

Résultats (2)

Multiplication de l'ISL par 100 (amplification entière).

Contrôle de la fréquence absolue du peigne par décalage de la séquence de phase temporelle :

Résultats (3)

Multiplication de l'ISL par 25/2:

Multiplication de l'ISL par 3/11:

Division de l'ISL par 100:

Conclusion

Généralisation du concept à d'autres variables continues (temps, position)

Remerciements : équipe OPTIMA (LIPhy), INRS

José Azaña

Luis Romero Cortés