

Peignes de fréquences optiques pour génération micro-onde à très bas bruit de phase

Romain Bouchand¹, Xiaopeng Xie¹, Daniele Nicolodi¹, Michel Lours¹, Michele Giunta², Wolfgang Hänsel², Matthias Leziu^ss, Ronald Holzwarth², Abhay Joshi³, Shubhashish Datta³, Christophe Alexandre⁴, Pierre-Alain Tremblin⁵, Giorgio Santarelli⁵ et <u>Y. Le Coq¹</u>,

MenioSystems

¹LNE-SYRTE, CNRS, Observatoire de Paris, UPMC, PSL*, France

- ²MenIoSystems GmbH, Germany
- ³ Discovery Semiconductor, NJ, USA
- ⁴ CNAM, laboratoire Cedric, France
- ⁵LP2N, Institut d'Optique, Univ. Bordeaux 1, Talence, France

Low-noise µwave : motivation

Existing very low ϕ -noise μ -wave sources (~10GHz):

- Room temp Sapphire osc. (Raytheon, formerly Poseidon Australia):
 -40dBc/Hz @ 1Hz, -170dBc/Hz @ 100kHz from carrier
- Cryogenic Sapphire oscillator (UWA, FEMTO-ST, ULISS): -100dBc/Hz @1Hz, -140dBc/Hz @ 100kHz from carrier
- Opto Electronic Oscillator (JPL/OEwaves):

-40dBc/Hz@1Hz, -160dBc/Hz @ 10kHz (large resonances after that)

Applications:

- atomic frequency standards
- radar
- VLBI
- synchronization of particle accelerators
- time reference distribution
- telecommunication

Frequency division, effect on phase noise fc [Hz] \rightarrow fc/N [Hz] then $\Delta \phi \rightarrow \Delta \phi/N$ [rad] $S_{\phi}(f) [dBc/Hz] \rightarrow S_{\phi}(f) = 20.log10(N) [dBc/Hz]$ Large noise reduction if N is large... Exemple : divide by 2 \3π 2π π

USL transferred to µ-wave (projection)

Low noise µ-wave generation with comb (optical frequency divider scheme)

Er-fibre comb with intra-cavity EOM

<u>WHY ?</u>

large feed-back BW difficult for Er fs lasers

- pump diode current : rather low response, ~100kHz max BP (with good phase-advance electronics...)

- PZT : resonances ~40kHz BW

Free-running high Fourier frequency phase noise is hard to kill with phase-locking

HOW ? (in coll. with MenloSystems)

Increase SNR for lower white phase noise floor

Thermal noise (Johnson-Nyquist) :

A 0 dBm $\mu\text{-wave}$ signal cannot have a white phase noise limit better than -177dBc/Hz Solution : increase $\mu\text{-wave}$ power

- higher optical power+more linear PD (in coll. with Discovery semiconductor)
- high rep rate fs laser / external rep rate multiplication

AMPM conv. in f_{rep} and harmonics photodetection

amplitude fluctuations of the fs laser induce fluctuations of phase of $\rm f_{rep}$ (and its harmonics)

- \rightarrow possible to lock amplitude (but only at low Fourier frequencies)
 - 1.2x10⁻¹⁶@1s generated $\mu wave$ / 100as synchro
- \rightarrow or analyze carefully the physics...

App. Phys. Lett. 96, 211105 (2010)

By space-charge screening effect, close to saturation, the PD response is asymmetric → AM noise

produces PM noise

For harmonic order >1 there are special situations...

Suppression of AMPM conversion

Applied Physics B 106, 301 (2012) Optics Letters 39, 1204 (2014)

Suppression of RIN

Suppression of RIN

Φ -noise Measurement method

At very low phase noise, cross-correlation is the technique of choice BUT tricky Most commercial systems are homodyne \rightarrow relatively high sensitivity to AM \rightarrow We developped our own heterodyne system

 Φ -noise Measurement method (development setup)

- Auxiliary sources are ~ good enough at high Fourier frequency and trivial to operate
- Cross-corelating away their noise takes time, and ways too much time for low Fourier frequencies → not useful for caracterizing noise frequencies < 1kHz

Φ -noise Measurement method (development setup)

Φ -noise Measurement method (Full setup)

Φ -noise Measurement method (Full setup result)

-104 dBc/Hz @ 1Hz -172 dBc/Hz @ 10kHz and beyond

From a 12 GHz carrier

Φ -noise result analysis

Conclusion

-104 dBc/Hz at 1 Hz -172 dBc/Hz at 10 kHz

Phase noise characterization by a heterodyne FPGA-based cross-correlation scheme

Noise floor below: -180 dBc/Hz

A comb is 3U 19" rack-size (and plane/ space qualified...), USL is larger (size of a H-maser, typically) and "only" ~10⁻¹⁵ (ie ~-100dBc/Hz) \rightarrow we are seeking better and/or more compact cw lasers for referencing the comb \rightarrow we are seeking in-field applications ...

