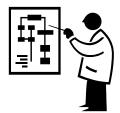


Case Study: Designing an Automotive Backup Camera

Presented by David Hasenauer

December 2017


Goal: Design a Compact, Wide-Angle, Manufacturable Automotive Back-Up Camera

- For this case study, we will:
 - –Monitor performance against System Specifications and Goals
 - –Find a suitable starting system
 - -Optimize to control manufacturability
 - -Determine the best asphere locations
 - -Simulate the camera view
 - -Plus much more!

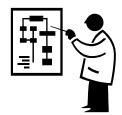
Design Process

Identify the Project Specifications and Goals

System Specifications & Goals:

Parameter	Specification
Wavelengths	486.1– 656.3 nm
Focal length; # of Elements;	Monitor
# of Aspheres	
F-number	f/2.5
Sensor Full-diagonal	2.8 mm
Field Full-diagonal	170°
Overall Length	< 15 mm
Lens Diameters	< 15 mm
Lens to Sensor clearance	> 1.0 mm
Relative Illumination	> 50%
As-Built MTF @75 c/mm (0° & 90°	
Azimuth), Mean+2σ Probability	
Minimum over field	> 0.25
Average over field	> 0.50
Diameter/CT (1/ATC)	>2:1;<10:1 (goal)
Diameter/ET (1/ATE)	>2:1;<10:1 (goal)

Let's "communicate" this to the Software

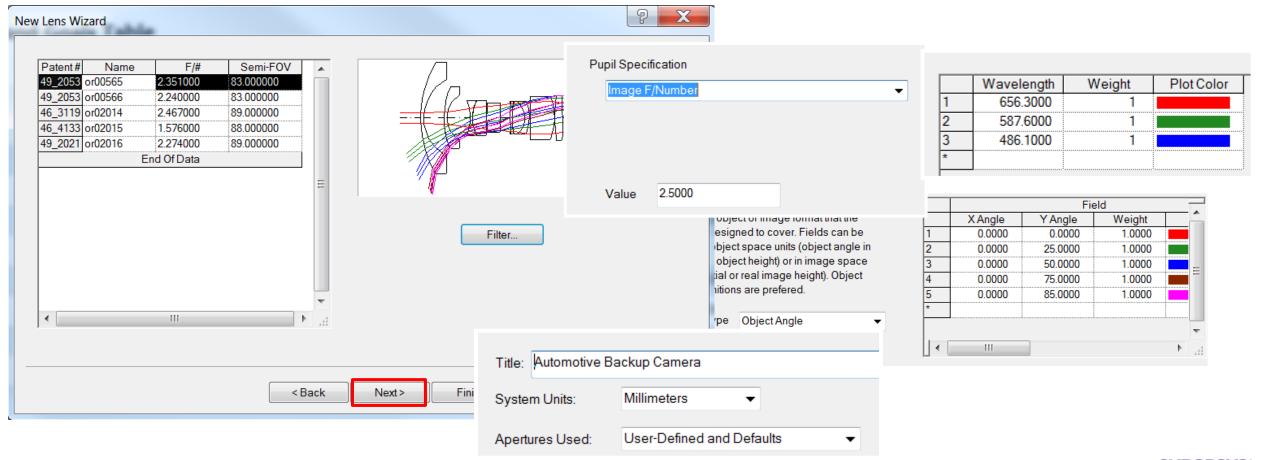

code	CODE V - I	untitled			
File	Edit Lens	Display	Review	Analysis	Optimizatio
1	New Lens				Ctrl+N
1	New SpecB	uilder	N		
(Open		5		Ctrl+O
	-				

Create a Specifications & Goals Table:

🔋 Spect	Builder - Ba	ckup_Camera.sgt					\bigotimes
SpecE	valuator						
Spe	cificat	ions and Goals Table					
	Label	Name	Goal Mode	Target	Value	Notes	•
v]	Spectral Range					
		Short Wavelength (nm): individual values over ZA	equal to	486.1000			
		Long Wavelength (nm): individual values over ZA	equal to	656.3000			
1]	Effective Focal Length (mm): individual values over ZA F1; direction - mean of X & Y	display only				=
v]	Number of Elements	display only				
1]	Number of Aspheric Surfaces: individual values over ZA	display only				
v]	F-number (First Order): individual values over ZA F1; direction - mean of X & Y	less than or equal to	2.5000			
v]	Image Diameter (mm): Chief Ray Based	equal to	2.8000			
1]	Field of View (Full-FOV, deg): individual values over ZA; direction - Y	equal to	170.0000			
v]	Overall Length to Image (mm): individual values over ZA	less than or equal to	15.0000			
~]	Surface Diameter (mm): individual values over ZA; overage scale factor = 1.020000	less than or equal to	15.0000			
v]	Image Clearance (mm): individual values over ZA; relative to the last physical; overage scale factor = 1.020000	greater than or equal to	1.0000			
v]	Relative Illumination (percent): individual values over ZA FA	greater than or equal to	50.0000			
 Image: A start of the start of]	MTF, As-Built (at 75.000 cycles/mm or cycles/afocal units, Mean + 2-sigma probability): individual values over ZA F	greater than or equal to	0.2500			
v]	MTF, As-Built (at 75.000 cycles/mm or cycles/afocal units, Mean + 2-sigma probability): average over ZA FA; azimu	greater than or equal to	0.5000			
v]	Aspect Ratio (Diameter/Center Thickness): individual values over refracting elements excluding flat plates; overage	in the range (inclusive)	2.0000, 10.0000			
v]	Aspect Ratio (Diameter/Edge Thickness): individual values over refracting elements excluding flat plates; overage s	in the range (inclusive)	2.0000, 10.0000			-
		III				ſ	

Design Process

Find an Appropriate Starting System


Patent Lens Search

- Search patent database of 2500 patent lenses for a suitable starting point:
 - -f/# < f/2.5
 - -Semi-FOV > 80° < 100°
 - –OAL/EFL (including Image) < 15

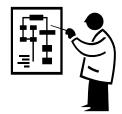
Filter				X
			Min	Max
Application	All	✓ F/#	0.0000	2.5000
Spectral Range	Visible 👻	Semi-Field of View	80.0000	100.0000
Object Distance	Finite <	Zoom Ratio	0.0000	0.0000
Image Distance	Finite -	Magnification	0.0000	0.0000
		BFL/EFL	0.0000	0.0000
		📝 OAL (with Image) / EFL	0.0000	15.0000
		OAL (w/out Image) / EFL	0.0000	0.0000
		C % Distortion	0.0000	0.0000
		Number of Elements	0	
		# of Moving Groups	0	0
ОК	Cancel			

Five Candidates were Identified:

• The pupil, wavelengths, and fields were adjusted for the selected lens:

Case Study: Designing an Automotive Backup Camera

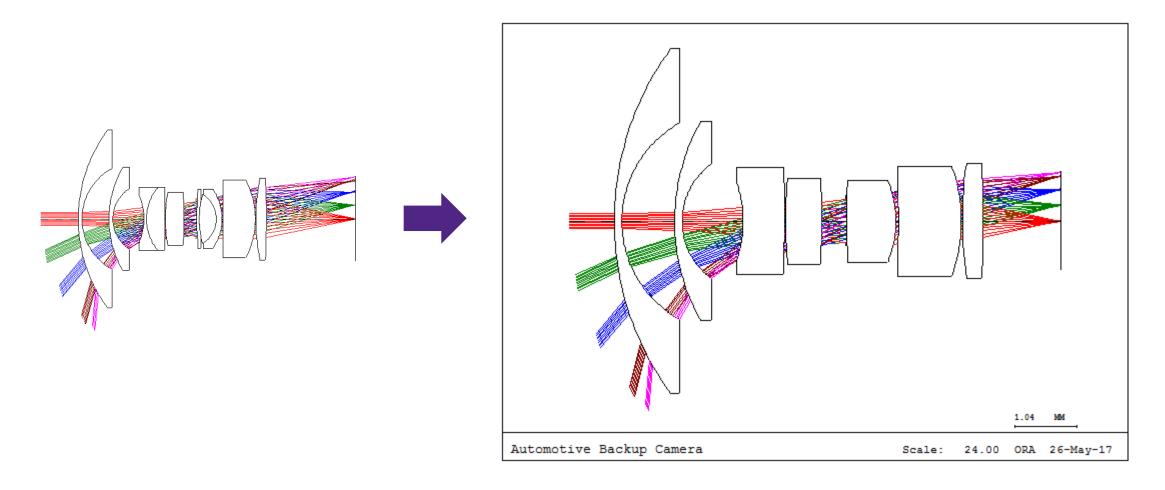
SAUDESAZ


Evaluate Starting System against Specs:

SpecBuilder - Back					l	- 0	
	ations and Goals Table						The system level and
🖌 🗹 🖌 Label	Name	Goal Mode	Target	Value		Notes	mechanical
	Effective Focal Length (mm): individual values over ZA F1; direction - mean of X & Y	display only		1.07849	0		specifications
	Number of Elements	display only		10.00000	0		are generally
	Number of Aspheric Surfaces: individual values over ZA	display only		0	0		being held,
	F-number (First Order): individual values over ZA F1; direction - mean of X & Y	less than or equal to	2.50000	2.50000	0		except for the
	Image Diameter (mm): Chief Ray Based	equal to	2.80000	2.80000	0		Element Aspect
	Field of View (Full-FOV, deg): individual values over ZA; direction - Y	equal to	170.00000	170.00000	0		Ratios.
	Overall Length to Image (mm): individual values over ZA	less than or equal to	15.00000	9.19081	0		
	Surface Diameter (mm): individual values over ZA; overage scale factor = 1.020000	less than or equal to	15.00000	[1.16237, 5.07758]	0		The nominal
	Image Clearance (mm): individual values over ZA; relative to the last physical; overage	greater than or equal to	1.00000	2.95191	0		system
	Relative Illumination (percent): individual values over ZA FA	greater than or equal to	50.00000	[42.60805, 100.00000) 0		performance is
	MTF (at 150.000 cycles/mm or cycles/afocal units): individual values over ZA FA DA; azi	display only		[0.03995, 0.13881]	0		quite poor, and
	MTF (at 150.000 cycles/mm or cycles/afocal units): average over ZA FA DA; azimuth - m	display only		0.08929	0		no tolerances
	MTF, As-Built (at 75.000 cycles/mm or cycles/afocal units, Mean + 2-sigma probability)	greater than or equal to	0.25000		`0 A	(1	are defined so
	MTF, As-Built (at 75.000 cycles/mm or cycles/afocal units, Mean + 2-sigma probability)	greater than or equal to	0.50000		0		we cannot
	Aspect Ratio (Diameter/Center Thickness): individual values over refracting elements e	in the range (inclusive)	2.00000, 10.00000	[1.88878, 39.76608]	0		evaluate the as-
	Aspect Ratio (Diameter/Edge Thickness): individual values over refracting elements exc	in the range (inclusive)	2.00000, 10.00000	[2.26089, 10.27066]	0		built MTF

SYNOPSYS°

Design Process



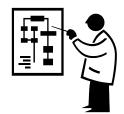
Remove Cemented Components Determine Optimization Variables and Constraints

Cemented Components Are Impractical for a Small Lens, in Which Many of the Elements May Be Molded

• Remove the cemented components:

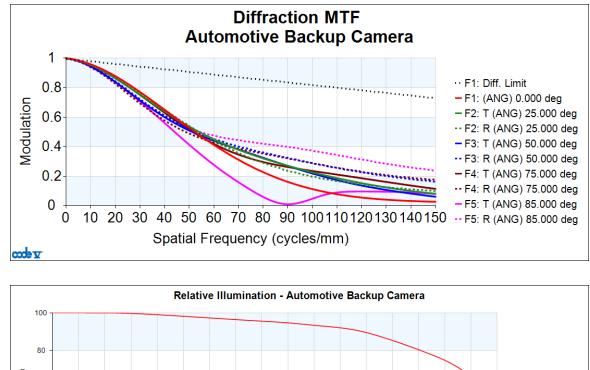
Make Radii, Thicknesses & Glass Variable

System [Data	Surface P	roperties	ļ			
Surface #	Surface Name	Surface Type	Y Radius	Thickness	Glass	Refract Mode	Y Semi-Apert ure
Object		Sphere	Infinity	Infinity		Refract	0
1		Sphere	4.9588 ^V	0.1277 V	620410.603000	♥Refract	2.4517 0
2		Sphere	1.9108 ^V	0.8937 🗸	•	Refract	1.6646 •
3		Sphere	3.4268 V	0.1277 V	620410.603000	✓ Refract	1.3344 0
4		Sphere	1.1985 V	1.0298 ^V	• · · · · · · · · · · · · · · · · · · ·	Refract	0.9768 0
5		Sphere	-2.0587 V	0.6979 ^V	620410.603000	♥Refract	0.6640 0
6		Sphere	-42.5557 V	0.0171 V	\$ 	Refract	0.5248 •
7		Sphere	5.7746 ^V	0.6127 V	830560.365000	♥Refract	0.5120 0
3		Sphere	-20.4468 V	0.4043 V	\$ 	Refract	0.4107 0
Stop		Sphere	Infinity	0.0213 V	\$ 	Refract	0.3609 0
10		Sphere	11.2336 V	0.8342 V	755200.275000	✓ Refract	0.3651 0
11		Sphere	-1.8172 V	0.0425 V	\$ 	Refract	0.4878 •
12		Sphere	-34.9692 V	1.0639 V	620410.603000	♥ Refract	0.5050 •
13		Sphere	-2.8325 V	0.0171 V	\$ 	Refract	0.6803 0
14		Sphere	6.8050 V	0.3490 V	620410.603000	♥Refract	0.7028 •
15		Sphere	-29.7475 ^V	1.3896 ^S		Refract	0.7212 0
Image		Sphere	Infinity	-0.0729 V		Refract	0.8390 •


Optimization Constraints

- Initial Constraints*:
 - –Image scale, overall length, image clearance, front lens semi-diameter, element aspect ratios (CT/Diameter & ET/Diameter), full-field relative illumination
- Final Constraints:
 - -All of the initial constraints, plus:
 - Constraints to prevent the back surfaces of the front two elements from optimizing to hemispheres
 - -General tolerance sensitivity constraints (SN2)
 - This made a huge difference in the eventual as-built performance
 - -Explicit center thickness constraints for the last two elements
 - -Their aspect ratios met spec, but due to their small size, we wanted them to be thicker

* The full set of optimization constraints is rarely known at the start of the design. The designer must monitor the evolution of the design, and potentially add new constraints, or relax some previously entered constraints to guide the lens design.



Evaluate Starting Performance

All-Spherical Optimized System Nominal Performance

Illumination Relative - Zoom position 1 \$ Object Space Field Angle (deg) codeγ

Evaluate All Spherical System against Specs:

SpecBuilder - Backup_Camera.sgt

Specifications and Goals Table

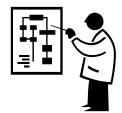
	√	Label	Name	Goal Mode	Target	Value		Notes	*
	V		Field of View (Full-FOV, deg): individual values over ZA; direction - Y	equal to	170.0000	170.0000	0		
	√		Overall Length to Image (mm): individual values over ZA	less than or equal to	15.0000	15.0000	0		
	v		Surface Diameter (mm): individual values over ZA; overage scale factor =	less than or equal to	15.0000	[0.9545, 14.9094]	0		
	v		Image Clearance (mm): individual values over ZA; relative to the last phy	greater than or equal to	1.0000	1.0943	0		
	V		Relative Illumination (percent): individual values over ZA FA	greater than or equal to	50.0000	[50.2763, 100.0000]	0		
	v		MTF (at 150.000 cycles/mm or cycles/afocal units): individual values over	display only		[0.0293, 0.1629]	0		
	V		MTF (at 150.000 cycles/mm or cycles/afocal units): average over ZA FA D	display only		0.1079	0		
	v		MTF, As-Built (at 75.000 cycles/mm or cycles/afocal units, Mean + 2-sig	greater than or equal to	0.2500	[0.0000, 0.3170]	0 A		
	v		MTF, As-Built (at 75.000 cycles/mm or cycles/afocal units, Mean + 2-sig	greater than or equal to	0.5000	0.2279	0 A		
	√		Aspect Ratio (Diameter/Center Thickness): individual values over refracti	in the range (inclusive)	2.0000, 10.0000	[2.3518, 6.7144]	0		
	V		Aspect Ratio (Diameter/Edge Thickness): individual values over refracting	in the range (inclusive)	2.0000, 10.0000	[2.7368, 6.7956]	0		
	v		CODE V Model Attribute - System Units	equal to	Millimeters	Millimeters	0		
	V		CODE V Model Attribute - Field				0		
			Number of Fields	equal to	5	5			
•								Þ	

The system level and mechanical specifications are being held, including the Element Aspect Ratios.

The as-built system performance is far below spec.

SpecEvaluator

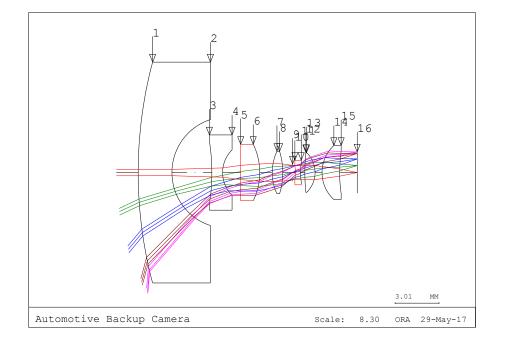
 \mathbf{X}


Image Simulation

- The parking lot scene was created using an iPhone in panoramic mode which approximately maps equal angles in the scene to equal distances on the image
 - -Object Angle mapping is supported in Image Simulation

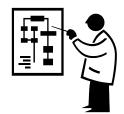
Lateral color, and image blurring are clearly visible

Design Process

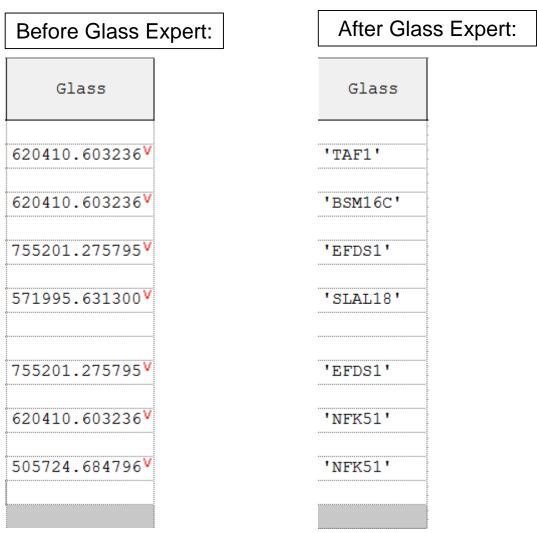


Improve Performance with Asphere Locations Selected Using Asphere Expert

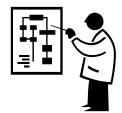
Using Asphere Expert


- Asphere Expert will rank the relative benefit of aspherizing <u>each spherical</u> <u>surface</u> in the lens
 - Computation time is equivalent to 1 optimization cycle, no matter how many surfaces are analyzed
 - -Constraints & smart filters are supported, such as limits on aspheric slope departure, maximum permitted aspheric order, concave/convex limits, surface numbers, etc.

Determining optimal asphere location									
NUMBER OF	SURFACE NUMBER	OPTIMIZED MERIT							
ASPHERES ADDED	OF NEW ASPHERE	FUNCTION VALUE	ELAPSED TIME						
0	-	14.0203509	00:00:00						
1	10	4.6639852	00:00:01						
2	5	3.1592893	00:00:04						



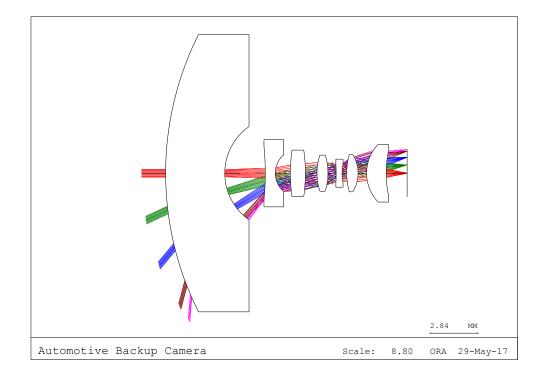
Find Real Glasses with Glass Expert

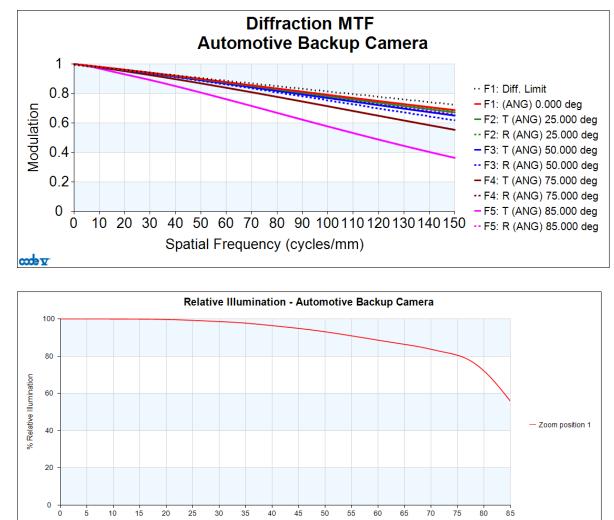

Glass Expert Automates the Traditional Glass Selection Process

- Uses an algorithm developed by Synopsys' ORAEngineering
- Iterates the following steps:
 - Replace a material
 - Optimize
 - Accept or reject the result based on:
 - Optical performance
 - Bulk absorption
 - Cost
 - Weight
 - Thermal expansion

For this system, we will allow it to select from among any of the Rochester Precision Optics (RPO) molded glasses

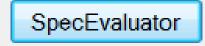
Design Process





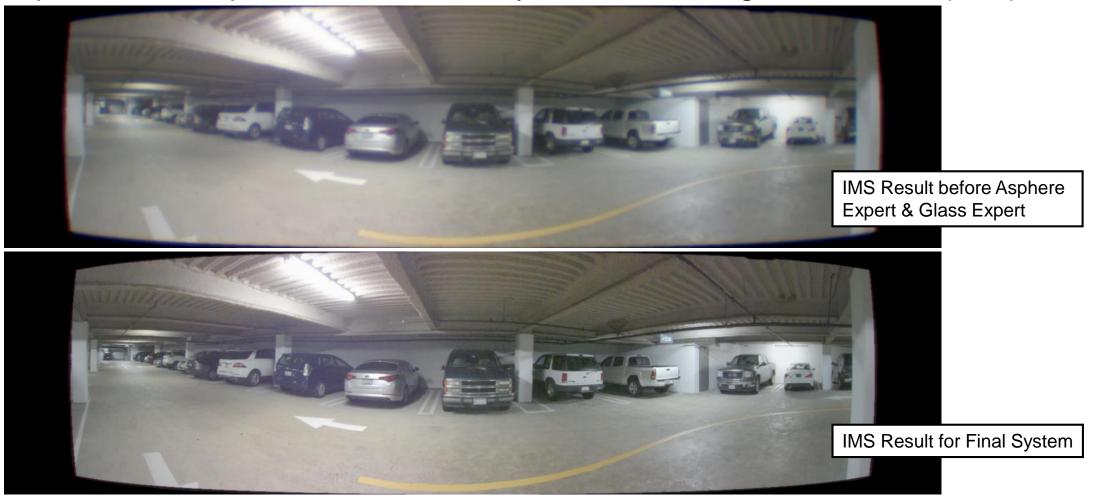
Evaluate Final Performance

Final System Nominal Performance



Object Space Field Angle (deg)

CODE A.


Evaluate Final System against Specs:

SpecBuilder - Ba	:kup_Camera.sgt						
						—	
Specificat	ons and Goals Table					All Specification	ons
🛛 🗹 Label	Name	Goal Mode	Target	Value	Notes 2	are met.	
✓	Effective Focal Length (mm): individual values over ZA F1; direction - mean of X & Y	display only		1.1230	0		
	Number of Elements	display only		7.0000	0	The loss in M ⁻	TE
v	Number of Aspheric Surfaces: individual values over ZA	display only		2	0	with tolerances	
	F-number (First Order): individual values over ZA F1; direction - mean of X & Y	less than or equal to	2.5000	2.5000	0		
v	Image Diameter (mm): Chief Ray Based	equal to	2.8000	2.8000	0	significant	
V	Field of View (Full-FOV, deg): individual values over ZA; direction - Y	equal to	170.0000	170.0000	0	(A · icon), but	
V	Overall Length to Image (mm): individual values over ZA	less than or equal to	15.0000	14.3239	0	design meets	
V	Surface Diameter (mm): individual values over ZA; overage scale factor = 1.020000	less than or equal to	15.0000	[1.1155, 14.9937]	0	the specification	วทร
V	Image Clearance (mm): individual values over ZA; relative to the last physical; overage scale fact	greater than or equal to	1.0000	1.0942	0	and goal.	
V	Relative Illumination (percent): individual values over ZA FA	greater than or equal to	50.0000	[55.6893, 100.0000]	0		
V	MTF (at 150.000 cycles/mm or cycles/afocal units): individual values over ZA FA DA; azimuth - m	display only		[0.5182, 0.6860]	0		
	MTF (at 150.000 cycles/mm or cycles/afocal units): average over ZA FA DA; azimuth - mean of 0	display only		0.6244	0		
V	MTF, As-Built (at 75.000 cycles/mm or cycles/afocal units, Mean + 2-sigma probability): individu	greater than or equal to	0.2500	[0.2828, 0.7541]	0 A		
	MTF, As-Built (at 75.000 cycles/mm or cycles/afocal units, Mean + 2-sigma probability): average	greater than or equal to	0.5000	0.6411	0 A		
v	Aspect Ratio (Diameter/Center Thickness): individual values over refracting elements excluding fl	in the range (inclusive)	2.0000, 10.0000	[2.3631, 5.5136]	0	1	
	Aspect Ratio (Diameter/Edge Thickness): individual values over refracting elements excluding fla	in the range (inclusive)	2.0000, 10.0000	[2.7205, 5.9815]	0	-	
	III				▶ .		

Image Simulation

• The improvement in performance is easily seen with Image Simulation (IMS)

Conclusion

- We have taken a patent lens starting point and developed a manufacturable, compact, high performance objective suitable as an Automotive backup camera
- Additional steps could include:
 - Reduction in the # of lenses (perhaps with the introduction of additional aspheric surfaces)
 - –Use of Global Optimization to optimize for an inherently tolerance insensitive design <u>form</u>
 - -The use of tolerance sensitivity constraints in optimization did greatly improve the as-built performance for this lens form, but these constraints are even more effective when the form of the lens is allowed to change significantly with global optimization

