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Time has emerged as a new degree of freedom for metamaterials, promising new pathways in
wave control. However, electromagnetism suffers from limitations in the modulation speed of material
parameters. Here we argue that these limitations can be circumvented by introducing a traveling-wave
modulation, with the same phase velocity of the waves. We show how luminal metamaterials generalize
the parametric oscillator concept, realize giant broadband nonreciprocity, achieve efficient one-way
amplification, pulse compression, and harmonic generation, and propose a realistic implementation in
double-layer graphene.
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Temporal control of light is a long-standing dream,
which has recently demonstrated its potential to revolu-
tionize optical and microwave technology, as well as our
understanding of electromagnetic theory, overcoming the
stringent constraint of energy conservation [1]. Along with
the ability of time-dependent systems to violate electro-
magnetic reciprocity [2–4], realize photonic isolators and
circulators [5–8], amplify signals [9], and perform har-
monic generation [10–12] and phase modulation [13],
new concepts from topological [14–16] and non-
Hermitian physics [17,18] are steadily permeating this
field. However, current limitations to the possibility of
significantly fast modulation in optics has constrained the
concept of time-dependent electromagnetics to the radio
frequency domain, where varactors can be used to modulate
capacitance [19], and traveling-wave tubes are commonly
used as (bulky) microwave amplifiers [20]. In the visible
and near IR, optical nonlinearities have often been
exploited to generate harmonics and realize certain nonre-
ciprocal effects [21]. However, nonlinearity is an inherently
weak effect, and high field intensities are typically required.
In this Letter, we challenge the very need for high

modulation frequencies, demonstrating that strong and
broadband nonreciprocal response can be obtained by
complementing the temporal periodic modulation of an
electromagnetic medium with a spatial one, in such a
way that the resulting traveling-wave modulation profile
appears to drift uniformly at the speed of the wave, i.e., a
“luminal” modulation. We show that unidirectional ampli-
fication and compression can be accomplished in luminal
metamaterials, which thus constitute a broadband gener-
alization of the narrow-band concept of the parametric
oscillator, enabling harmonic generation with exponential
efficiency. We present a realistic implementation based on
acoustic plasmons in double-layer graphene (DLG), thus
circumventing the intrinsic limitations in the modulation

speed of its doping level. Our findings, which are trans-
ferable to other wave domains, hold potential for efficient
harmonic generation (terahertz, in the specific case of
graphene), loss compensation, and amplification of waves.
Bloch (Floquet) theory dictates that the wave vector

(frequency) of a monochromatic wave propagating in a
spatially (temporally) periodic medium can only Bragg
scatter onto a discrete set of harmonics, determined by the
reciprocal lattice vectors. This still holds true when the
modulation is of a traveling-wave type, whereby Bragg
scattering couples Fourier modes, which differ by a discrete
amount of both energy and momentum [2,7,22–25].
As shown in Fig. 1 for a 1D system, these space-time
reciprocal lattice vectors can be defined to take any angle in
phase space, depending on whether a generic traveling-
wave modulation of the material parameters of the form
δϵðgx −ΩtÞ is spatial [Fig. 1(a)Ω ¼ 0], temporal [Fig. 1(d)
g ¼ 0], or spatiotemporal [Figs. 1(b) and 1(c) g ≠ 0,
Ω ≠ 0]. Given the slope c0 of the bands in a Brillouin
diagram, which denotes the velocity of waves in a dis-
persionless medium, the speed of the traveling-wave
modulation defines a subluminal regime Ω=g < c0
[Figs. 1(a) and 1(b)], whereby conventional vertical
band gaps open [22], and a superluminal one Ω=g > c0
[Figs. 1(c) and 1(d)], characterized by horizontal, unstable k
gaps [23,26]. A common example of the latter is the
parametric amplifier [g ¼ 0, Fig. 1(d)]: when the parameters
governing an oscillatory system are periodically driven at
twice its natural frequency, exponential amplification occurs,
as a result of the unstable k gap at frequency ω ¼ Ω=2.
However, achieving such fast modulation at infrared frequen-
cies remains a key challenge for dynamical metamaterials.
The transition between the regimes in Figs. 1(b) and 1(c),

i.e., Ω=g ¼ c0, is an exotic degenerate state that we name
luminal metamaterial, whereby all forward-propagating
modes are uniformly coupled. Because of its broadband
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spectral degeneracy in the absence of dispersion, this
system is highly unstable, thus preventing a meaningful
definition of its band structure. Nevertheless, if we
consider transmission through a spatially (temporally)
finite system with well-defined boundary conditions,
causality can be imposed in the unmodulated regions
of space (time), so that an expansion into eigenfunctions
can be performed, as detailed in the Supplemental
Material [27]. In luminal metamaterials, the photonic
transitions induced by the modulation of the refractive
index are no longer interband [31], but intraband, and can
therefore be driven by means of any refractive index
modulation, regardless of how adiabatic, whose recipro-
cal lattice vector ðg;ΩÞ satisfies the speed-matching
condition Ω=g ¼ c0. Hence, any limitation in modulation
frequency Ω can be compensated, in principle, by a
longer spatial period L ¼ 2π=g. Notably, these can be
locally induced by modulating the properties of the
medium and can thus synthetically move at any speed,
including and exceeding the speed of light, in analogy
with the touching point of a water wave front propagating
almost perpendicularly to a beach or the junction between
the blades of a pair of scissors.
In real space, amplification in this system can be

modeled as follows: consider a nondispersive, lossless
medium where εðx;tÞ¼1þ2αcosðgx−ΩtÞ, with Ω=g¼c0.
Following the derivation of Poynting’s theorem, we can
write

∇ · ðE ×HÞ ¼ −
μ0
2

∂H2

∂t −
ε0ε

2

∂E2

∂t − ε0
∂ε
∂t E

2; ð1Þ

so that the total time derivative of the local energy density is

dU
dt

¼ −
1

ε

∂ε
∂t U −

∂P
∂x þ c0

∂U
∂x ¼ −

1

ε

∂ε
∂t U −

∂P0

∂x ; ð2Þ

where the compensated Poynting vector P0 consists of a
local and an advective part (due to the moving frame) [27].
The first term in Eq. (2) is responsible for gain, whereas
the second describes the Poynting flux, which drives
the compression of the pulse. Ignoring the Poynting
contribution to zero order yields UðX; tÞ ¼ e−2αΩt sinðgXÞ,
where X ¼ x − Ωt=g. Feeding the zero-order solution
into the resulting compensated Poynting vector P0 ¼
c0½εðX; tÞ−1=2 − 1�U in Eq. (2), we obtain a corrected
expression for the energy density

UðX; tÞ ¼ exp ½−2αΩt sinðgXÞ − α2Ω2t2 cos2ðgXÞ�: ð3Þ

Alternatively, the system can also be modeled with a
semianalytic Floquet-Bloch expansion of the fields, and
the transmission coefficient can be calculated for a finite
slab, validating our analytical expressions [27]. Assuming a
slab of length d, and substituting Ωt ¼ gd in Eq. (3), we
calculate the temporal profile of the electric field intensity
at the output x ¼ d [Fig. 2(a)]. The modulation is able to
exponentially amplify and concentrate the signal at the
point with phase Ωt ¼ π=2 and exponentially suppress it at
Ωt ¼ 3π=2. The reason is apparent from Fig. 2(b): those
field amplitudes that sit at −π=2 < Ωt < π=2 experience a
lower permittivity, and hence a higher phase velocity,
whereas those sitting at π=2 < Ωt < 3π=2 lag, so that
the point corresponding to a phase Ωt ¼ π=2 acts as an
attractor, or gain point, where the modulation imparts
energy into the wave. Conversely, Ωt ¼ 3π=2 is a repeller,
or loss point, where energy is absorbed by the modulation
drive (further numerical simulations are provided in the
Supplemental Material [27]).
As evidenced by the absence of any frequency depend-

ence in Eq. (3), and in contrast to conventional time-
modulated systems, parametric amplification in a luminal
medium is a fully broadband phenomenon, enabling
exponentially efficient generation of frequency wave-
vector harmonics, as shown in Fig. 2(c). Remarkably, even
a dc input can be transformed into a broadband pulse train
at an exponential rate, as revealed by Floquet-Bloch
calculations [see Fig. 2(d)]. Our closed-form analytic
solution enables us to exactly quantify the power ampli-
fication rate as 2αΩ, which needs to overcome the loss for
amplification to occur. However, the reactive behavior
responsible for the compression performance is unaffected
by losses, which only reduce the overall output power
efficiency. Furthermore, these systems are transparent to

(a) (b)

(c) (d)

FIG. 1. (a) The band structure of a conventional spatial crystal
is repeated in phase space at k ¼ ng, n ∈ Z, forming vertical
band gaps (ω gaps). (b) Similarly, the band structure of a
traveling-wave-modulated crystal is symmetric under discrete
translations by an oblique reciprocal lattice vector ðg;ΩÞ. When
Ω=g < c0, ω gaps open, whereas (c) Ω=g > c0 leads to unstable
k gaps. (d) Finally, if the wavelength of the modulation L → ∞,
then g → 0, so that the system is effectively only modulated in
time. In this case, the modulation speedΩ=g → ∞ and the system
becomes a narrow-band, reciprocal, parametric amplifier. The
transition between (b) and (c), whereby the light line and the
reciprocal lattice vector are aligned, is a luminal crystal.
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counterpropagating waves, thus entailing the additional
advantage of nonreciprocity. Moreover, while nonrecipro-
cal response is typically observed only near band gaps in
conventional systems [2], it is achieved at virtually any
frequency in a luminal metamaterial.
Because of their ease of manipulation, metasurfaces offer

the most promising playground to realize dynamical effects
[1,32,33], also due to the rise of tunable two-dimensional
materials [34,35]. Recently, graphene has emerged as a
platform to enhance light-matter interactions [36–39], reali-
zing atomically thin metasurfaces [13,40–43]. Its doping
level, which can be tuned with ion-gel techniques to be as
high as 2 eV [44,45], can be dynamically modulated via all-
optical techniques, with experimentally reported response
times as short as 2.2 ps at relative doping modulation
amplitudes of 38% [46,47]. In addition, modern-quality
graphene features extremely high electron mobility, with
measured experimental values of 350 000 cm2=ðV sÞ [48].
The dispersion relation of graphene plasmons follows a

square root behavior ω ∼
ffiffiffi
k

p
, where ω is the angular

frequency and k is the in-plane wave vector. However,
in a double-layer configuration [Fig. 3(a)], a second
“acoustic” plasmon branch arises [28,49,50], whose
dispersion

ω ∝
ffiffiffiffiffi
ϵF

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1 − e−δ0kÞ

q
≃

ffiffiffiffiffiffiffiffiffi
δ0ϵF

p
k

�
1 −

δ0k
4

�
ð4Þ

is linear for small interlayer gaps δ0 ≪ k−1 (ϵF is the Fermi
energy). Here we exploit the linearity of this acoustic

plasmon band to realize a luminal metasurface, while
accounting for dispersion, and we demonstrate nonrecip-
rocal plasmon amplification and compression. Alternative
amplification schemes for graphene plasmons have been
theoretically proposed, such as drift currents [51–53],
periodic doping modulation [54], adiabatic doping sup-
pression [55], and plasmonic Čerenkov emission by hot
carriers [56].
We assume a semiclassical (Drude) conductivity model,

which is accurate as long as ℏω ≪ ϵF and k ≪ kF. Our
setup consists of two graphene layers, whose Fermi levels
are modulated as ϵFðx; tÞ ¼ ϵF;0½1þ 2α cosðgx − ΩtÞ�
[Fig. 3(a)]. Dispersion is accounted for by expressing
the constitutive relation for the current Jðx; tÞ in Fourier
space, where the conductivity modulation couples neigh-
boring frequency harmonics

Jn ¼
e2ϵF;0
πℏ2

En þ αðEnþ1 þ En−1Þ
γ − iðωþ nΩÞ ; ð5Þ

where γ is the loss rate and En is the nth Fourier amplitude
of the in-plane electric field, which is continuous at the
layer positions z ¼ 0 and z ¼ δ0, as detailed in the
Supplemental Material [27]. The magnetic field of
the p-polarized wave Hyðx; z; tÞ is discontinuous at the
layers by the surface current [28]. This system can be
accurately described within an adiabatic regime, since the
modulation frequency Ω ≪ ω. Furthermore, since acoustic
plasmons carry much larger momentum than photons, the
modes are strongly quasistatic, so that the out-of-plane

(a) (c) (d)

(b)

FIG. 2. (a) An incident plane wave is concentrated and exponentially amplified as it propagates through a luminal metamaterial
(g ¼ Ω ¼ 1, α ¼ 0.04) of length d (inset), at whose exit the field is calculated. Continuous lines correspond to Floquet-Bloch theory,
whereas dashed lines and circles were obtained from our analytic model to zeroth and first [Eq. (3)] order, respectively. (b) Waves
preceding (following) the gain point (Ωt ¼ π=2) experience a lower (higher) permittivity, hence a higher (lower) phase velocity, thus
being attracted toward the gain point, at which amplification occurs. Conversely, waves preceding (following) the loss point
(Ωt ¼ 3π=2) are drawn away from it, depleting it of energy. (c) An incident monochromatic wave with input frequency ω0 ¼ 8Ω is
efficiently coupled to higher harmonics at an exponential rate. Beating arises from the differentΩ and ω0. (d) The frequency content (log
scale) of a dc input applied to a luminal metamaterial spreads out exponentially in Fourier space, generating a supercontinuum.
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decay constant κn ≃ kþ ng, and coupling to radiation is
negligible, given that both spatial and temporal frequencies
of the doping modulation are much smaller than the
plasmon wave vector and frequency. Taking advantage
of the adiabatic assumption, we can conveniently solve the
scattering problem in the time domain, as detailed in the
Supplemental Material [27].
In our calculations, we assume a Fermi energy ϵF ¼

1.5 eV ≈ 2πℏ × 362 THz and a loss rate γ ¼ ðv2Fe=
mϵF;0Þ ≈ 60 GHz, where m ¼ 105 cm2=ðV sÞ is the elec-
tron mobility, and the Fermi velocity vF ≈ 9.5 × 105 ms−1.
Figure 3(b) demonstrates plasmon amplification and com-
pression for different modulation times Tf. Here, we use a
modulation amplitude α ¼ 0.05, interlayer gap δ0 ¼ 1 nm,
an input frequency ω=2π ¼ 1 THz, and a modulation
frequency Ω=2π ¼ 120 GHz, which corresponds to a
modulation period τ ¼ 2π=Ω ≈ 8 ps and length
L ≈ 26 μm, such that the long-wavelength phase velocity
of the plasmon is matched by the modulation speed
cp ¼ Ω=g. Since the DLG plasmon bands are approxi-
mately linear, we can set c0 ¼ cp in order to use our closed-
form solution [Eq. (3)], and verify the analogous
amplification mechanism, showing excellent agreement
with Floquet-Bloch theory [Fig. 3(c)]. Finally, Fig. 3(d)
demonstrates the total power amplification achieved by our
luminal graphene metasurface: initially the unit input
power of the wave is predominantly dissipated by the
uniform losses, except at the gain point, so that this first
propagation moment is dominated by damping. Once

sufficient power is accumulated at the gain point, the
energy fed by the modulation into the plasmon ensures
that its propagation is effectively loss compensated, as in
the case of α ¼ 0.08, extending its lifetime by orders of
magnitude, or even amplifying it, as in the α ¼ 0.1 case.
As the luminal modulation couples the frequency content

of the pulse to very high-frequency-wave-vector harmon-
ics, these will experience the nonlinearity of the bands. In
Fig. 4, we use a wider interlayer gap δ0 ¼ 15 nm and
higher mobility m ¼ 106 cm2=ðV sÞ, to highlight the
effects of dispersion on the pulse profile [Fig. 4(a)] and
its spectral content [Fig. 4(b)] for different modulation
times Tf. At a first stage, since higher frequency compo-
nents experience a slightly lower phase velocity, the gain
point must shift back to gX < π=2, where the increase in
local phase velocity determined by the modulated
Fermi energy compensates for the curvature of the band
(Fig. 4, inset). In addition, Fourier components propagating
with phase velocity cp are amplified near the conventional
gain point, thus skewing the pulse (Tf ¼ 5τ). Finally, for
even longer propagation times, the wave will cease to
compress and break into a train of pulses. This is due to
the existence of a finite regime of phase velocities:
ð1þ 2αÞ−1=2 < vp=cp < ð1 − 2αÞ−1=2, within which the
interaction between copropagating bands is strong enough

(a) (c)

(d)

(b)

FIG. 3. (a) Double-layer graphene configuration. (b) The DLG
plasmon intensity is amplified and compressed at the gain point
gX ¼ π=2, as a luminal modulation is applied over increasingly
long time windows Tf. (c) The intensity at the gain point grows
exponentially as a function of both modulation time Tf and
amplitude α for sufficiently strong (α ¼ 0.06, 0.08) or fast
modulation, as predicted by our analytic model. (d) The inte-
grated power of the plasmon reduces initially, due to dissipation.
Once the pulse is localized near the gain point, loss compensation
(α ¼ 0.06, 0.08) and even amplification (α ¼ 0.1) are possible.

(a) (b)

FIG. 4. (a) The effect of dispersion causes a gradual shift of the
gain point due to the slower phase velocity of higher frequency
components, as well as a skewing on the pulse. For even longer
modulation times, the wave breaks into a train of narrow pulses.
(b) The spectral content of the pulse is amplified and projected
from an input frequency of ≈4 to ≈30 THz, demonstrating
efficient terahertz frequency generation using a modulation
frequency of only Ω=2π ¼ 120 GHz. High-frequency compo-
nents whose phase velocity is below the instability threshold are
not coupled; hence dispersion stabilizes the system. Here we
assumed a wider gap δ0 ¼ 15 nm to highlight the effect of
dispersion, α ¼ 0.05.

PHYSICAL REVIEW LETTERS 123, 206101 (2019)

206101-4



to make the system unstable [23]. In our setup, the relative
phase velocity

vpðkÞ
cp

¼
�
ωðkÞ
k

���
Ω
g

�
≃
�
1 − e−kδ0

δ0k

�
1=2

ð6Þ

decreases approximately linearly with increasing wave
vector [27]. Equating the latter to the lower threshold
velocity ratio vpðkcÞ=cp ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α

p
, where α ¼ 0.05

and expanding the exponential to second order, we get
an analytical estimate for the critical wave vector
kc ≈ 13 rad=μm, beyond which the pulse is no longer
strongly excited to higher harmonics, and its power
spectrum is effectively reflected, resulting in beating.
Thus, dispersion plays the important role of stabilizing
these systems. Subsequently, the power spectrum oscillates
within the extended luminal region, although beating
between different space-time harmonics, no longer in
phase, induces fast oscillations, reminiscent of comb
formation in nonlinear optics [57].
In this Letter, we have introduced the concept of luminal

metamaterials, realized by inducing a traveling-wave
modulation in the permittivity of a material, whose phase
velocity matches that of the waves propagating in it, in the
absence of modulation. We have shown that these dynami-
cal structures generalize the concept of parametric ampli-
fication to cover a virtually unlimited bandwidth, thus
being capable of reinforcing and compressing input waves
of any frequency, including a dc field. We have demon-
strated their robustness against moderate dispersion and
proposed a realistic implementation exploiting acoustic
plasmons in double-layer graphene, thus paving a new
viable route toward the amplification of graphene plasmons
and terahertz generation. Furthermore, luminal metamate-
rials exhibit an inherent, strongly nonreciprocal response at
any frequency, due to the directional bias induced by the
modulation, whose phase velocity can be made as high as
needed by extending the spatial period of the modulation,
the only limitation being the propagation length of the
excitation, and hence the loss.
Furthermore, thanks to its ability to couple incident

electromagnetic waves to higher frequency-momentum
harmonics at an exponential rate, the luminal metamaterial
concept constitutes a fundamentally new path toward
efficient harmonic generation, which can work even with
a dc input, necessitating only low modulation speeds, as
opposed to conventional parametric systems. Finally, we
remark that this concept can be translated to any wave
system that exhibits a linear or weakly dispersive regime,
such as acoustic, elastic, and shallow-water waves, and the
reach of this mechanism could be further extended by
introducing chirping, in analogy with the tuning of the
frequency of a driving field with the energy of electrons
accelerated in a synchrocyclotron.
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1 Analytical Model

Consider a space-time dependent profile of the relative permittivity in a dispersionless medium:

ε = 1 + 2α cos(gx− Ωt),

which moves with a phase velocity cp = Ω/g. Maxwell’s equations in the medium read:

∇× E = −∂B

∂t
∇×H =

∂D

∂t
(1)

and taking the scalar product of these two expressions with H and E respectively, we get:

H · (∇× E) = −H · ∂B

∂t
E · (∇×H) = E · ∂D

∂t
(2)

The difference between the last two equations gives:

H · (∇× E)− E · (∇×H) ≡ ∇ · (E×H) = −H · ∂B

∂t
− E · ∂D

∂t
(3)

= −µ0

2

∂H2

∂t
− εε0

2

∂E2

∂t
− ε0E

2∂ε

∂t
(4)

Thus, the rate of change of the energy density in the fields is given by:

∂U

∂t
=
µ0

2

∂H2

∂t
+
εε0

2

∂E2

∂t
= −ε−1∂ε

∂t
U −∇ · (E×H), (5)

where, since the modulation can only pump energy into the electric field, we assumed that the
electric contribution to the energy density ε0ε

2
E2 = U − µ0

2
H2 ' U dominates over the magnetic

one. In one dimension, the latter is simply ∂P
∂x

, where P is the Poynting vector along the axis of
propagation (i.e. x).

We now change variables (x, t) → (x − cpt, t) = (X, t), effectively boosting our coordinates to
the comoving frame. In this frame, the time derivative ∂

∂t
must be substituted by the comoving

derivative d
dt

= ∂
∂t

+ cp
∂
∂x

, so that the energy density effectively takes on an advective term cp
∂U
∂x

from the Poynting flux acquired as a result of the boost, and Eq.5 becomes:

dU

dt
= −ε−1∂ε

∂t
U − ∂P

∂x
− cp

∂U

∂x
(6)

At a first approximation, we ignore the Poynting contribution, so that we are left with:

dU

dt
' −ε−1∂ε

∂t
U ' −2αΩ sin(gX)U (7)
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This is exact at the gain- and loss-points, as the second and third term in Eq. 6 cancel one
another since the modulation amplitude vanishes there. Integrating the latter gives us the zero-
order solution:

U(X, t) = e−2αΩt sin(gX), (8)

where we took U(t = 0) = 1.
We can get a correction to the above expression by recognising that the Poynting vector is

given by the product of the local phase velocity c(X, t) = ε−1/2cp with the local energy density
U(X, t). Plugging our zero-order solution for U(X, t) into Eq. 6 yields:

dU

dt
= −ε−1∂ε

∂t
U − cp

∂

∂x
[(ε−1/2(X, t)− 1)U(X, t)] (9)

' −ε−1∂ε

∂t
U − cp(ε−1/2 − 1)

∂U

∂x
(10)

' [−2αΩ sin(gX)− 2α2cpΩgt cos2(gX))]U (11)

Finally, solving the latter (note: cp = Ω/g):

U(X, t) = e−2αΩt sin(gX)−α2Ω2t2 cos2(gX) (12)

Note that the Poynting contribution vanishes at the gain and loss points, indicating that the
previous solution is indeed exact there.
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2 Floquet-Bloch Theory: modulated dielectric

Here we present the Floquet-Bloch solution of the scattering problem through a finite space-time
slab. Consider a space-time modulated dielectric with permittivity ε = 1 + 2α cos(gx − Ωt). We
assume a solution of the form E = Ezz, H = Hxx +Hyy, where

Ez =
∑
n

Ene
i[(k+ng)x−(ω+nΩ)t], Hy =

∑
n

Hy,ne
i[(k+ng)x−(ω+nΩ)t], Hx =

∑
n

Hx,ne
i[(k+ng)x−(ω+nΩ)t]

(13)

Plugging these into Maxwell’s Equations, we retrieve an eigenvalue equation for k:

kEn = −
∑
n′

ngδn,n′En′ − µ0

∑
n′

(ω + nΩ)δn,n′Hy,n′ (14)

kHy,n = −
∑
n′

ngδn,n′Hy,n′ − ε0

∑
n′

{(ω + nΩ)[δn,n′ + α(δn+1,n′ + δn−1,n′)] + Ωα(δn+1,n′ − δn−1,n′)]}En′

(15)

which can be written, in matrix form, as:

k

(
E
H

)
=

(
MEE MEH

MHE MHH

)(
E
H

)
(16)

For α = 0, the eigenvalues

k±vn = −ng ±
√
c−2

0 (ω + nΩ)2 (17)

and eigenvectors

v±n =

(
1

(ng + k±vn)/µ0(ω + nΩ)

)
(18)

may be calculated analytically. Calculating the sign of the resulting group velocity enables the
determination of left- and right-propagating waves in the vacuum regions.

Subsequently, we can write the fields in the two regions outside of the luminal metamaterial as
superpositions of the vacuum eigenvectors:(

E
(1)
v,z

H
(1)
v,y

)
= Mvince

(1)
vinc + Mvrefe

(1)
vref

(
E

(2)
v,z

H
(2)
v,y

)
= Mvince

(2)
vtra (19)

and inside the metamaterial:(
E

(1)
m,z

H
(1)
m,y

)
= Mmem

(
E

(2)
m,z

H
(2)
m,y

)
= MmPem (20)

where Mvinc and Mvref are rectangular matrices containing the right- and left-propagating eigen-
vectors respectively, Mm is a square matrix containing all eigenvectors inside of the metamaterial,



2 FLOQUET-BLOCH THEORY: MODULATED DIELECTRIC 5

and P is a diagonal matrix Pmn = exp (ikmd)δmn which propagates each eigenvector from the left
to the right interface. Applying the continuity of Ez and Hy at the two interfaces, we arrive at a
matrix equation:

(
A B

)( e
(2)
vtr

e
(2)
vref

)
=
(
Mvinc 0

)(e
(1)
vinc

0

)
(21)

where:

A = Mm(MmP)−1Mvinc B = −Mmvref (22)

are rectangular matrices, such that their concatenation is square, so that the transmitted and
reflected amplitudes can be readily calculated by inverting Eq. 21.
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Figure 1: (a) Maximum electric field intensity of a pulse propagating through a luminal metama-
terial as calculated in COMSOL (blue bars), and predicted by our analytic model (red dots). The
inset shows the physical setup. (b) Field plot of the electric field intensity along the slab as time
increases (rows). The green curves represent the phase of the spatial modulation profile at the
different times, demonstrating that amplification takes place at the gain points.

3 Finite-Element Time-Domain Simulations

Here we provide the results of fully numerical simulations obtained with the numerical package
COMSOL Multiphysics. The system is depicted in Fig. 1a (inset): a gaussian pulse,

E(x, t) = cos(ω0t− k0x)e−(t−t0)2/∆t2 , (23)

with carrier wavelength ω0 ≈ 1.88 rad/fs (corresponding to k0 = 6.28 rad/µm) and width ∆t = 13
fs is injected from the left side of a slab of width Lg (with periodic boundary conditions above
and below), subject to a permittivity modulation δε = 2α cos(gx− Ωt), where α = 0.05, g ≈ 3.14
rad/µm, Ω ≈ 0.942 rad/fs. The spatial length of the grating is Lg = 2 µm, the carrier wavelength
λ0 = 1 µm.

After a time delay t0 = 35 fs, we measure the peak of the electric field intensity max |E|2 in the
pulse as it evolves over time. In Fig. 1a we compare its exponential increase with that predicted
by our analytic model: |E|2 ∝ exp (2αΩt) demonstrating excellent matching between the two.

Fig. 1b shows the intensity profile along the slab at subsequent time instants (corresponding to
the different rows). The green sinusoids depict the phase of the modulation profile at the different
times, highlighting the fact that the amplification mechanism follows closely the explanation given
in the main manuscript. We point out that the additional wiggles are due to the use of a real carrier
wave, as opposed to the complex phasor used in the analytic and Floquet-Bloch calculations.
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Figure 2: Setup for modulated double-layer graphene (DLG). The top surface sits at z = 0, whereas
the bottom one sits at z = d.

4 Floquet-Bloch Theory: modulated double-layer graphene

Here we consider surface plasmons on spatiotemporally modulated double-layer graphene (DLG),
assuming that the conductivity profile is the same on both graphene layers. The setup is shown in
Fig. 2. We solve Maxwell’s Equations (MEs) in each domain, and introduce an auxiliary equation
for the surface current J , which, coupled to the boundary conditions, introduces the coupling
between different Floquet-Bloch modes of the structure induced by the modulation.

4.1 Uniformly doped Double Layer Graphene

On uniformly doped DLG, the p-polarised plasmon fields read [1]:

Ej = (Ej,xx̂ + Ej,zẑ)e−κj |z|ei(kx−ωt) (24)

Bj = Bj,yŷe
−κj |z|ei(kx−ωt) (25)

for j = 1, 3 and:

E2 =

[
(E

(+)
2,x x̂ + E

(+)
2,z ẑ)eκ2|z| + (E

(−)
2,x x̂ + E

(−)
2,z ẑ)e−κ2|z|

]
ei(kx−ωt) (26)

B2 =

[
B

(+)
2,y ŷeκ2|z| +B

(−)
2,y ŷe−κ2|z|

]
ei(kx−ωt), (27)

where k is the in-plane wavevector, ω is the plasmon frequency and κj is the out-of-plane decay
constant in the jth domain. The relations between the magnetic field and electric field amplitudes,
which are derived from MEs in the three domains, read [1]:

Bj,y = −ωεj
c2k

Ej,z Bj,y = −i sgn z
ωεj
c2κj

Ej,x (28)
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for j = 1, 3 and:

B
(+)
2,y = −ωε2

c2k
E

(+)
2,z B

(+)
2,y = i

ωε2

c2κ2

E
(+)
2,x (29)

B
(−)
2,y = −ωε2

c2k
E

(−)
2,z B

(−)
2,y = −i ωε2

c2κ2

E
(−)
2,x (30)

Furthermore, MEs give us: κj =
√
k2 − εjω2/c2

4.2 Modulated DLG

In order to account for the travelling-wave modulation, we generalise this ansatz as customary [2]:

Ej = ei(kx−ωt)
Ng∑

n=−Ng

(Ej,x,nx̂ + Ej,z,nẑ)e−κj,n|z|ein(gx−Ωt) (31)

Bj = ei(kx−ωt)
Ng∑

n=−Ng

Bj,y,nŷe
−κj,n|z|ein(gx−Ωt) (32)

for j = 1, 3, where we defined:

κj,n =
√

(k + ng)2 − εj(ω + nΩ)2/c2 (33)

Similarly, for j = 2 we have:

E2 = ei(kx−ωt)
∑
n

[
(E

(+)
2,x,nx̂ + E

(+)
2,z,nẑ)eκ2,nz + (E

(−)
2,x,nx̂ + E

(−)
2,z,nẑ)e−κ2,nz

]
ein(gx−Ωt) (34)

B2 = ei(kx−ωt)
∑
n

[
B

(+)
2,y,nŷe

κ2,nz +B
(−)
2,y,nŷe

−κ2,nz
]
ein(gx−Ωt) (35)

In the absence of a modulation in the conductivity of graphene, the ansatz above would simply
return a separate solution for each individual Floquet-Bloch (FB) mode. However, care must be
taken that <[κj,n] > 0 ∀n, or we would have solutions which grow exponentially away from the
graphene. We can then generalise the previous relations between the amplitudes as:

Bj,y,n = −(ω + nΩ)εj
c2(k + ng)

Ej,z,n Bj,y,n = −i sgn z
(ω + nΩ)εj
c2κj,n

Ej,x,n (36)

for j = 1 (sgn (z) < 0), 3 (sgn (z) > 0) and:
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B
(+)
2,y,n = −(ω + nΩ)ε2

c2(k + ng)
E

(+)
2,z,n B

(+)
2,y,n = i

(ω + nΩ)ε2

c2κ2,n

E
(+)
2,x,n (37)

B
(−)
2,y,n = −(ω + nΩ)ε2

c2(k + ng)
E

(−)
2,z,n B

(−)
2,y,n = −i(ω + nΩ)ε2

c2κ2,n

E
(−)
2,x,n (38)

(39)

We thus have 12(2Ng + 1) unknowns: 6(2Ng + 1) coefficients for the fields in the j = 2 region,
and 3(2Ng + 1) coefficients for each of the j = 1, 3 regions.

In order to solve for the fields, we already have 8(2Ng + 1) equations for the amplitudes:
4(2Ng + 1) equations relating the field amplitudes in the j = 2 region, and 2(2Ng + 1) for each of
the j = 1, 3 regions. The 4(2Ng + 1) missing equations are obtained by imposing continuity of the
in-plane electric fields Ex at z = 0, and z = d:

E
(+)
2,x,n + E

(−)
2,x,n = E1,x,n (40)

E
(+)
2,x,ne

κ2,nd + E
(−)
2,x,ne

−κ3,nd = E3,x,ne
−κ3,nd (41)

and by imposing discontinuity of the magnetic field By/µ0 by the surface current J(x, t):

ei(kx−ωt)
∑
n

[
B1,y,n − (B

(+)
2,y,n +B

(−)
2,y,n)

]
ein(gx−Ωt) = µ0J0(x, t) (42)

ei(kx−ωt)
∑
n

[
B

(+)
2,y,ne

κ2,nd +B
(−)
2,y,ne

−κ2,nd −B3,y,ne
−κ3,nd

]
ein(gx−Ωt) = µ0Jd(x, t) (43)

where we denoted by J0 and Jd the surface current at the top (z=0) and bottom (z=d) graphene
sheets respectively. In order to account for dispersion in the response of graphene, however, we
introduce the surface current via an auxiliary equation, obtained from a semiclassical treatment
of the graphene optical conductivity (see Sec. 5), which gives:

Jn =
e2εF,0
π~2

[En + α(En+1 + En−1)]

γ − iω + nΩ
(44)

Hence, the space-time modulation introduces a frequency-wavevector coupling between Fourier
amplitudes of the electric and magnetic field.

4.3 Derivation of the eigenvalue problem for ω

For simplicity, we shall also assume that we are in a symmetric environment, with equal dielectrics
on either sides, so that ε1 = ε2 = ε3 = ε, κ1,n = κ2,n = κ3,n = κn and J0 = Jd. The system then
has reflection symmetry with respect to the z = d/2 axis. This halves the number of equations
that we have to solve, since, for the acoustic mode, we have [1]:
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Ex(z = d/2−∆) = −Ex(z = d/2 + ∆) (45)

Ez(z = d/2−∆) = Ez(z = d/2 + ∆) (46)

By(z = d/2−∆) = By(z = d/2 + ∆) (47)

We choose to match the fields at z = 0. Inserting our expression for Jn in the appropriate
boundary condition (Eq. 42):

[
B1,y,n − (B

(+)
2,y,n +B

(−)
2,y,n)

]
=
µ0e

2

π~2

1

[γ − i(ω + nΩ)]
[εFE1,x,n + α(E1,x,n−1 + E1,x,n+1)] (48)

E
(+)
2,x,n + E

(−)
2,x,n = E1,x,n (49)

By symmetry of the acoustic mode: B
(−)
2,y,n = eκndB

(+)
2,y,n. Substituting the magnetic field for the

electric field in Eq. 49 by using:

E1,x,n = −i c2κn
(ω + nΩ)ε

B1,y,n E
(+)
2,x,n = −i c2κn

(ω + nΩ)ε
B

(+)
2,y,n E

(−)
2,x,n = +i

c2κn
(ω + nΩ)ε

B
(−)
2,y,n (50)

and dividing through by the common prefactors, Eq. 49 becomes:

B
(+)
2,y,n −B

(−)
2,y,n = B1,y,n (51)

And exploiting the symmetry of the fields:

(1− eκnd)B(+)
2,y,n = B1,y,n (52)

B
(+)
2,y,n =

1

1− eκnd
B1,y,n (53)

B1,y,n − (B
(+)
2,y,n +B

(−)
2,y,n) = B1,y,n − (1 + eκnd)B

(+)
2,y,n (54)

=

(
1− 1 + eκnd

1− eκnd

)
B1,y,n (55)

Hence, substituting into the first boundary condition:

[
B1,y,n − (B

(+)
2,y,n +B

(−)
2,y,n)

]
=
µ0e

2

π~2

εF,0
γ − i(ω + nΩ)

[E1,x,n + α(E1,x,n−1 + E1,x,n+1)] (56)(
1− 1 + eκd

1− eκnd

)
B1,y,n =

1

γ − i(ω + nΩ)

∑
n′

Λn,n′En′ (57)

[γ − i(ω + nΩ)]B1,y,n =

(
1− 1 + eκnd

1− eκnd

)−1∑
n′

Λn,n′En′ (58)

ωB1,y,n = −(nΩ + iγ)B1,y,n + i

(
1− 1 + eκnd

1− eκnd

)−1∑
n′

Λn,n′En′ (59)
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where we defined: Λn,n′ =
µ0e2εF,0

π~2 [δn,n′ + α(δn,n′−1 + δn,n′+1)]. In order to write an eigenvalue
problem for our system, we solve this simultaneously with the first of Eqs. 50:

(ω + nΩ)E1,x,n = −ic
2κn
ε1

B1,y,n (60)

ωE1,x,n = −nΩE1,x,n −
ic2κn
ε

B1,y,n (61)

We shall hereafter omit the subscripts indicating the domain and dimensional component of
the field coefficients, denoting E1,x,n → En and B1,x,n → Bn. We can then use the quasistatic

approximation: κn =
√

(k + ng)2 − ε(ω + nΩ)2/c2 '
√

(k + ng)2, since k � k0 k0 � k, g � k
and Ω� ω. The full eigenvalue problem for ω thus reads:

ωEn = −nΩEn −
ic2
√

(k + ng)2

ε
Bn′ (62)

ωBn =
∑
n′

{[
i

(
1 +

e
√

(k+ng)2d + 1

e
√

(k+ng)2d − 1

)−1

Λn,n′En′ (63)

− (nΩ + iγ)Bn (64)

The inverse of the term in big round brackets can be written as 1
2
(1− e−

√
(k+ng)2d), so that the

equations read, in matrix form:

ω

(
E
B

)
=

(
MEE MEB

MBE MBB

)(
E
B

)
= Θ

(
E
B

)
(65)

with:

MEE
n,n′ = −n′Ωδn,n′ MEB

n,n′ = −
ic2
√

(k + n′g)2

ε
δn,n′ (66)

MBE
n,n′ =

i

2
(1− e−

√
(k+ng)2d)Λn,n′ MBB

n,n′ = −(n′Ω + iγ)δn,n′ (67)

For convenience, we can define dimensionless variables such that the plasmon velocity at k = 0:

lim
k→0

vp(k) =

√
e2εFd

2ε0επ~2
= cp (68)

takes the value 1, k → k̂ = kd, ω → ω̂ = ωd/cp(k = 0). An alternative method to account
for dispersion is to expand the exponential in powers of (k + ng), truncate the series and solve
a nonlinear eigenvalue problem. However, the choice of solutions with the right behaviour at
z → ±∞ is non-trivial in this case, and it would realistically only account for dispersion to first or
second order. On the contrary, solving the eigenvalue problem for ω, and subsequently performing
the scattering problem in the time domain allows us to retain the full dispersion.



4 FLOQUET-BLOCH THEORY: MODULATED DOUBLE-LAYER GRAPHENE 12

4.4 Unmodulated case

In the unmodulated case α = 0, and Λ̂n,n′ = δn,n′ so the eigenvalues:

ω±vn = −iγ
2
±
√√

(k + ng)2(1− e−
√

(k+ng)2)− γ2

4
(69)

can be calculated analytically, (omitting the hats). Note that, due to the quasistatic approx-
imation used κn =

√
(k + ng)2 − ε(ω + nΩ)2 '

√
(k + ng)2, this calculation cannot account for

transient waves at the temporal boundaries. This is valid, since the modulation is adiabatic, and
the effect of the sustained amplification dominates over any transient effects. From Eq. 69 we can
calculate the group velocity:

∂ω±vn
∂k

= sgn (k + ng)
(1− e−

√
(k+ng)2 +

√
(k + ng)2e−

√
(k+ng)2)

2(ω±vn + nΩ)
(70)

whose real part gives us the direction of propagation, thus allowing us to distinguish between
forward and backward-propagating waves. The normalised eigenvectors are:

v±n =

(
En
Bn

)
=

(
1

i(ω±vn+nΩ)√
(k+ng)2

)
/

[
1 +
|ω±vn + nΩ|2

(k + ng)2

]1/2

(71)

Finally, we point out that, for forward-travelling waves ∼ e−iωt to decay over time, the eigen-
values ω must have a negative imaginary part, so that the effect of loss is to damp the waves as
they propagates forward in time. By contrast, waves which are time-reversed as a result of the
modulation need to have a positive imaginary part. Hence, once identified, we must take their
complex conjugate.

4.5 Scattering Problem in the time domain

We now calculate the scattering across a temporal window, during which the travelling-wave mod-
ulation is applied, and calculate the transmitted and time-reversed waves. At times t < 0 the
plasmon is propagating with frequency ω and wavevector k. As the doping modulation is switched
on at t = 0, the system is periodic in space, so that its original quasi-momentum k is conserved.
We can thus obtain the associated frequency eigenvalues, and propagate the solution up to time
t = Tf , when it is switched off, and the pulse will consist of a forward-traveling wave, and a time-
reversed one. The convenience of this approach is that the quasi-momentum k is a good quantum
number, since the modulation is applied along an infinite graphene sheet. Hence, we can retain
all the dispersion, without needing to solve a nonlinear eigenvalue problem as in an ”on-shell”
calculation for k(ω).

We first expand the solution at the inner sides of the two time-interfaces t = 0+ and t = T−f
into a superposition of eigenmodes of the modulated graphene:
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(
E

(1)
m

B
(1)
m

)
= Mmem

(
E

(2)
m

B
(2)
m

)
= MmP em, (72)

where em is a vector containing the amplitudes of each eigenvector contributing to the fields
at the first temporal boundary, Mm is a 2(2Ng + 1)(rows)× 2(2Ng + 1)(columns) matrix, which
contains one eigenvector of the modulated system for each column, and Pjj = e−iωjTf , ωj is a diag-
onal matrix which contains the eigenvalues of the modulated system, propagating the eigenmodes
from the first to the second temporal interface.

Before (t = 0−) and after (t = T+
f ) switching on the modulation, the fields read:

(
E

(1)
v

B
(1)
v

)
= M inceinc

(
E

(2)
v

B
(2)
v

)
= M incetra + M referef , (73)

where M inc and M ref are (2 × (2Ng + 1))(rows) × (2Ng + 1)(columns) matrices, whose
columns contain the forward-propagating eigenvectors of the unmodulated system, and einc and
eref contains their respective amplitudes.

In order to apply boundary conditions at t = 0 and t = Tf , respectively, we set:

(
E

(1)
m

B
(1)
m

)
= Mmem = M inceinc =

(
E

(1)
v

B
(1)
v

)
(74)(

E
(2)
m

B
(2)
m

)
= MmP em = M incetra + M referef =

(
E

(2)
v

B
(2)
v

)
(75)

Multiplying the latter by Mm(MmP )−1 we obtain:

Mm(MmP )−1(MmP )em = Mmem = [Mm(MmP )−1]
(
M inc M ref

)(etra

eref

)
= Q

(
etra

eref

)
(76)

and substituting Eq.76 into Eq. 74:

Q

(
etra

eref

)
=
(
M inc 0

)(einc

0

)
, (77)

which can be solved by direct inversion and substituted in the Fourier expansion of the fields.
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5 Semiclassical theory of doping modulation

This calculation follows the argument in [1, 3], and assumes that the modulation is spatially and
temporally adiabatic, compared to any electron relaxation processes. We start from the Boltzmann
equation for the distribution gk,t, which is the non-equilibrium contribution to the full distribution
f(εk) = f 0(εk) + gk:

−∂f
0(εk)

∂εk
evk · E =

gk
τk

+ vk · ∇rgk +
∂gk
∂t

, (78)

f 0(εk) being the Fermi-Dirac distribution. The solution of the equation above is:

gk = −∂f
0(εk)

∂εk
Φq(ω, k)ei(q·r−ωt) (79)

where:

Φq(ω, q) =
eτvk · E

1− iωτ + iτq · vk

(80)

Note that we are using q for the wavevector of the electromagnetic wave, and k for that of the
electrons. In order to include the adiabatic spatiotemporal modulation of the graphene Fermi level
εF (x, t) = εF,0(1 + 2α cos(gx− Ωt), we write:

fm(εk, x, t) =
1

e(εk−εF (x,t))/kBT + 1
(81)

which is valid provided that Ω� ω, and g � q, so that we have:

∂fm

∂εk
= − 1

kBT

e(εk−EF,0(1+2α cos(gx−Ωt)))T

(e(εk−EF,0(1+2α cos(gx−Ωt))/kBT + 1)2
(82)

We neglect nonlocality effects, which are contained in the diffusive term vk · ∇rgk term of
Eq. 78, and are not expected to modify qualitatively the physics described in this work. We thus
get:

−∂f
m(εk, x, t)

∂εk
evk · E =

gk
τk

+
∂gk
∂t

(83)

We now multiply by the surface element d2k and evk, and integrate over k-space, assuming
that the collision rate γ = 1/τ is independent of k, and using vk · E = vFEx cos(θ):

−e2

∫
d2k

∂fm(εk, x, t)

∂εk
vk(vk · E) = (γ +

∂

∂t
)

∫
d2kevkgk (84)
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We can now use the fact that:

Jn =
gvgs
4π2

∫
d2kevkgk =

2 · 2
4π2

∫
d2kevkgk =

1

π2

∫
d2kevkgk (85)

where gv and gs are the valley and spin degeneracies, both equal to 2, to re-write Eq. 83 as:

−e2

∫
d2k

∂fm(εk, x, t)

∂εk
vk(vk · E) = π2(γ +

∂

∂t
)J (86)

To evaluate the LHS, we transform the integral to polar coordinates, and multiply both sides
by x̂ in order to obtain Jx:

−e2v2
FE

∫
kdk

∂fm(εk, x, t)

∂εk

∫ 2π

0

cos2(θ)dθ = π2(γ +
∂

∂t
)J (87)

Introducing the linear dispersion of Dirac carriers εk = vF~k, and using
∫ 2π

0
cos2(θ)dθ = π the

integral becomes:

e2E

π~2

∫
εdε[−∂f

m(εk, x, t)

∂εk
] = (γ +

∂

∂t
)J (88)

and in the low temperature limit T → 0, −∂fm(εk,x,t)
∂εk

→ δ(ε− εF (x, t)), so that we get:

e2

π~2
εF (x, t)E = (γ +

∂

∂t
)J (89)

The electric field is E(x, t) = ei(qx−ωt)
∑

nEne
in(gx−Ωt)x̂, and we seek a Floquet-Bloch solution

for the current J(x, t) = ei(qx−ωt)
∑

n Jne
in(gs−Ωt) [2], so that:

e2εF,0
π~2

∑
n′

[ein
′(gx−Ωt) + α(ei(n

′+1)(gx−Ωt) + ei(n
′−1)(gx−Ωt))]En′ =

∑
m

[γ − i(ω +mΩ)]Jme
im(gx−Ωt)

(90)

Finally, multiplying by e−in(gx−Ωt), integrating, and solving for Jn:

Jn =
e2εF,0
π~2

[En + α(En+1 + En−1)]

γ − iω + nΩ
(91)
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Figure 3: (a) Dispersion relation of acoustic plasmons in DLG for different values of the interlayer
gap δ0. (b) Deviation of the acoustic plasmon dispersion from the linear regime (in percentage) for
different values of δ0. The inset shows the reactive (imaginary, continuous blue line) and dissipative
(real, red dashed line) parts of the conductivity as a function of frequency.

6 Dispersion relations of acoustic plasmons in DLG

In the interest of completeness, we report here (Fig. 3a) the dispersion relation of acoustic plasmons
in graphene:

ω =

(
e2εF
2ε0~2

k(1− e−kδ0)
)1/2

(92)

for different values of the interlayer gap δ0 = 1 (blue curve), 5 (red curve) and 15 nm (yellow
curve), together with the Dirac cone (purple dashed line) f = vFk/(2π) [1].

Furthermore, we show in Fig. 3b the % deviation of the frequency of acoustic plasmons from
the linear regime e−kδ0 ' 1− kδ0, as a function of frequency, for the same values of the interlayer
gap.

Finally, the inset shows the reactive (imaginary, continuous blue line) and dissipative (real,
red dashed line) parts of the Drude conductivity of graphene for the parameters used in the main
text:

σ(ω) =
e2

π~2

εF
γ − iω

(93)
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