

Tribological and thermo-mechanical properties of optical coatings: From banknotes to satellites

Ludvik Martinu and Jolanta E. Klemberg-Sapieha

Functional Coating and Surface Engineering Laboratory – FCSEL-LaRFIS Engineering Physics Department Thin Film Research Center – GCM Regroupement québécois sur les matériaux de pointe - RQMP Ecole Polytechnique, Montreal, Quebec, Canada

JT CMO, Palaiseau, le 27 janvier 2011

Pleasure and imagination

L. Martinu, Colors from Europe, America and Asia

Colors

Admiration

Antireflective (AR) coatings

The AR council (www.arcouncil.org)

Security devices

Bank of Canada (www.banqueducanada.ca)

US Bureau of Engraving and Printing (www.moneyfactory.com)

Architectural glass, automotive glazing

Schott (www.us.schott.com)

FIGURE 2. Glazing on a building may be the most important component of the building's exterior aesthetic quality, which leads to thin-film glass-coating effects on incident light.

Paul Fisette, «Understanding Energy-Efficient Windows», *Fine Homebuilding*, no. 114, pp. 68–73.

Light generation and conversion

Solar cells

Large area lighting

Displays and visors

Optically variable devices – OVD Color effects, decorative coatings

Colorshift (www.colorshift.com)

Telecommunications

Present and future trends – driving forces

Applications

- Optical coatings on plastics (AR, UV protection, mechanical protection)
- Tunable optical filtres
- High power (laser) applications
- Displays, lighting
- Photovoltaics
- Control of environment smart windows, automobile glazings
- IR and DUV optics
- Space optics and astronomy satellites, telescopes
- Biomedical engineering, sensors
- Micro-opto-electro-mechachanical systems (MOEMS)
- Organic electronics

Each application represents specific environmental stability and functional properties criteria:

- a) Need for better understanding
- b) New metrology
- c) New solutions

Optical coatings – from design to manufacture

Optical coatings – from design to manufacture

Refractive index of PECVD and PVD coatings

Interference filters:

High, low, medium refractive index:

 n_{H}, n_{L}, n_{M}

k < 10⁻⁵

α = 4πk / λDispersion curves: n(λ), k(λ)

L. Martinu et al., in Handbook of Thin Film Deposition Technologies, P.M. Martin, ed., Elsevier 2010

Important properties of optical film-substrate systems

Load-displacement curve

3.

 $h_{\rm max}$: Maximum depth

ISO 14577-1 (2002) Oliver W.C., Pharr G.M., J. Mater. Res., 7 (1992) 1564-1583

Hardness (*H*):

 $H = \frac{F_{\max}}{\Lambda}$

 $E_r = S \frac{\sqrt{\pi}}{2\sqrt{A}}$

Elastic modulus (E):

 $\frac{1}{E_{r}} = \frac{1 - \upsilon^{2}}{E} + \frac{1 - \upsilon_{i}^{2}}{E_{i}}$

Tip area function:

 $A = f(h_c)$

for a "perfect" Berkovich indenter

 $A = 24.5 h_c^2$

Doerner M.F., Nix W.D., J. Mater. Res., 1 (1986) 601-609

Coefficient of thermal expansion & Poisson's ratio

1

Thermal stress:

$$\sigma(T) = \sigma_i + (\alpha_s - \alpha_f)(\frac{E_f}{1 - \nu_f})(T - T_d)$$

<u>Two-substrate technique</u> to determine:

- CTE Coefficient of thermal expansion
- Poisson's ratio, v_f

Measured E

$$\alpha_{film} = \frac{\alpha_{s2} (\frac{d\sigma}{dT})_{s1} - \alpha_{s1} (\frac{d\sigma}{dT})_{s2}}{(\frac{d\sigma}{dT})_{s1} - (\frac{d\sigma}{dT})_{s2}}$$
$$v_f = \left(\frac{1}{E_r} - \frac{1 - v_i^2}{E_i}\right) \frac{d\sigma}{dT} \frac{1}{\alpha_s - \alpha_f} - 1$$

Substrates: α_{Si} = 2.6×10⁻⁶ °C⁻¹ , α_{GaAs} = 5.1×10⁻⁶ °C⁻¹

Example for Nb₂O₅, Ta₂O₅ and SiO₂ films: $\alpha_{Nb2O5} = 4.9 \times 10^{-6} \,^{\circ}\text{C}^{-1}$, $\alpha_{SiO2} = 2.1 \times 10^{-6} \,^{\circ}\text{C}^{-1}$ $v_{fNb2O5} = 0.22$, $v_{fSiO2} = 0.11$ σ-*T* plots

E. Cetinorgu et al., Applied Optics 2009

Microhardness of PECVD and PVD coatings

Mechanical requirements:

Adhesion Stress Compatibility (plastics) Scratch and wear resistance:

- ~ H/E elastic strain to failure
- ~ H³/E² resistance to plastic deformation

L. Martinu et al., in Handbook of Thin Film Deposition Technologies, P.M. Martin, ed., Elsevier 2010

Scratch test

L. Martinu, in "Plasma Processing Polymers" R. d'Agostino et al., eds., Kluwer, 1997

Micro-scratch test (MST)

Adhesion measurements: Critical load $\Rightarrow F_{c}[N]$

Tip:hemispherical Rockwell C diamondTip radius: $r = 50, 100, 200 \ \mu m$ Load rate: $\nu = 3 \ N/min$ Load range: $F_N = 0 - 30 \ N$

Friction coefficient

Force: $F_{\rm N} = 1 \ {\rm N}$ Tip radius: $r = 200 \ {\rm \mu m}$ Speed: $v = 1 \ {\rm cm/min}$ Scratch length: $/ = 1 \ {\rm cm}$

Tribological testing

Pin-on-disc

frictional force F_T

RH = 50 %

sliding speed 0.3 cm/s

load $F_N = 0.3 - 10 \text{ N}$

sapphire - 18 GPa SiN_{1.3} - 17 GPa Al₂O₃ - 15 GPa HS steel - 0.9 GPa $r \sim 3$ mm

Triboindenter

diamond tip $r \sim 3 \ \mu m$

Wear test parameters :

load, $F_N = 100 \mu$ N scan rate: 24 μ m/s scan size: 4 μ m x 4 μ m (x30) distance moved, $s = 59,300 \mu$ m

```
Wear rate: K = \frac{V}{F_N s}
V- worn volume
```

Reference: K_{FS} = 10.6 ± 0.9 x 10⁻⁶ mm³/Nm

Wear mechanisms

- adhesive
- <u>abrasive</u>
- <u>fatigue</u>
- <u>chemical</u>
- delamination
- brittle fracture
- erosion
- cavitation

K. Holmberg, A Matthews, *Coatings Tribology: Properties, Techniques and Applications in Surface Engineering,* Elsevier 1994

Tribo-corrosion characterization

- Structural and compositional analyses (XRD, SEM, EDX, ...)
- Mechanical properties: (hardness, H, Young;s modulus, E,), wear coefficient: K
- Corrosion: *E*_b, *i*_{corr}, *R*_p (Potential of WE is measured with respect to RE)
- Tribo-corrosion:
- Wear test in a liquid environment:

- Reciprocating frequency: 1 Hz
- Normal load: 9 N
- Counterface: Alumina ball 4.5 mm dia.
- Number of cycles: 1800
- Stroke length: 10 mm
- Medium : 1% NaCl in water

Three-electrode configuration

M. Azzi et al., Wear 2009

The normal force, frictional force, number and rate of cycles and the electrochemical parameters, current and potential, are continuously monitored during the test.

Optical coatings – from design to manufacture

Interference security image structures - ISIS

Optically variable devices - OVDs

Canadian banknote

Total number of Canadian banknotes passed and seized

http://www.rcmp.ca/scams/counter_e.htm

US banknote - Optically variable ink

Metameric interference filters

Metamerism: Two objects with different reflection or transmission spectra present the same color under a specific light source and for a specific human observer.

Creation of a hidden image effect by combining two metameric interference filters: **B. Baloukas, L. Martinu, Appl. Opt. 2008.**

Hidden image concept (0 and 50 degrees)

• Pairs of complex metameric filters are highly sensitive to deposition errors.

Metamerism in transmission: Polymer film and interference filter

One of the filters is replaced by a **simple non-iridescent material** (NIM) - <u>Benefits:</u> Presence of a color reference; Easy to authenticate by light in transmission;

Automatic authentication by laser scanning.

Spectra for Kapton® film (continuous line), metameric filter design (dashed line) and deposited filter (dotted line).

Device based on a filter and two Kapton® windows.

Transmission metameric device combining a transparent coloured paint and an interference filter.

B. Baloukas, Appl. Opt. 2008

- B. Baloukas et al., Appl. Opt. 2010
- B. Baloukas et al., SolMat, 2011

Structure and color coordinates of four color filters: A-D

Sample	Layers	Total thickness (nm)	Color coordinates (xyY)	Color
Filter A	Ta ₂ O ₅ /SiO ₂ (13 layers)	790	(0.494, 0.453, 48.85)	
Filter B	Nb ₂ O ₅ /SiO ₂ (19 layers)	1600	(0.416, 0.278, 33.80)	
Filter C	Cr/SiO ₂ /Nb (3 layers)	372	(0.196, 0.151, 11.32)	
Filter D	Al/SiO ₂ /Nb ₂ O ₅ /Nb (4 layers)	305	(0.380, 0.318, 65.62)	

Substrates:Glass, polycarbonateFabrication process:Dual ion beam sputtering,
Magnetron sputtering

- (i) immersion into 100% acetone for 24 hours at room temperature
- (ii) immersion into a bleach (*4% Sodium Hypochloride*) solution for 24 hours at room temperature
- (iii) laundry machine test done at 60°C for two cycles (20 minutes each) using the standard detergent load
- (iv) humidity test performed at 80 °C in a 100% relative humidity environment for 24 h and 480 h
- (v) durability test consisting of keeping the samples at 55°C in ambient air for an extended period of time.

Color effects related to the sensitivity of human eye

Evaluation of the stability of filter B

Color difference between the original filters' color and that obtained after each individual test for three different illuminants

	Illuminant	$\Delta E_{(L^*a^*b)}$												
Sample		Bleach		Acetone	Laundry		Heat			Humidity				
			PC		Glass I	PC	Glass		РС		Glass		PC	
		Glass	rc	Glass		rC	120 h	720 h	120 h	720 h	24 h	480 h	24 h	480 h
Filter A	D65	1.11	7.26	0.47	0.60	2.40	0.13	0.22	0.45	0.49	2.68	2.18	1.24	3.21
	Α	0.99	6.61	0.42	0.50	2.15	0.13	0.23	0.43	0.45	2.43	1.86	1.27	2.88
	F1	1.18	7.57	0.50	0.63	2.56	0.13	0.21	0.41	0.47	2.90	2.36	1.20	3.40
Filter B	D65	0.38	0.73	0.09	1.06	1.72	0.38	0.41	0.11	0.26	0.44	0.76	0.28	3.42
	Α	0.42	0.79	0.18	0.67	1.79	0.38	0.47	0.17	0.27	0.78	0.70	0.20	3.72
	F1	0.68	0.73	0.09	1.12	1.64	0.46	0.54	0.04	0.20	0.96	1.06	0.25	3.09
Filter C	D65	Fully delaminated		4.67	12.78	6.88	1.65	10.28	2.41	11.05	21.49	69.24	-	-
	Α			3.96	10.47	5.57	1.34	8.07	1.94	9.41	17.26	56.14	Strong	-
	F1			4.89	14.12	7.57	1.93	10.86	2.67	11.93	22.09	72.01	Change?	-
	D65	Fully delaminated		1.25	1.11	0.73	0.74	1.40	2.22	1.47	Partially delaminated		Partially delaminated	
Filter D	D A			1.08	0.75	0.54	0.52	1.05	1.65	1.52				
	F1			1.01	1.12	0.74	0.78	1.04	2.03	1.54				

Filter A : Ta_2O_5/SiO_2 (13 layers) Filter B : Nb_2O_5/SiO_2 (19 layers) Filter C: $Cr/SiO_2/Nb$ (3 layers) Filter D: $Al/SiO_2/Nb_2O_5/Nb$ (4 layers)

Design and fabrication of inhomogeneous filters

OpenFilters: S. Larouche et al, Appl. Opt., 2008; S. Larouche et al., Appl. Opt. 2004

Wear rate for TiO_2/SiO_2 films with different *n*

M.-A. Raymond et al., Proc 44th Tech. Conf., SVC, 2011

Wear rate for multilayer vs inhomogeneous systems

Quest for the red color

R. Vernhes et al., Proc. SVC, 2010, Collab. with Hauzer Techno Coating

Reflection spectra of deposited coatings

Outer space applications: Characteristics of the space environment

Atomic oxygen (90% at an altitude of 300 km)

Pressure (10⁻⁶ Torr)

Intense ultraviolet radiation

Cyclic changes of temperature $(-150^{\circ}C \text{ to } 150^{\circ}C)$

Build-up of surface electric charge

Micrometeorites

Protection against atomic oxygen

Uncoated Kapton

SiO₂-coated Kapton after 6 months in space

Diamond-like carbon atomic oxygen sensors with controlled concentrations of bonded and unbonded hydrogen

Participation in 6 Space Shuttle flights since 1990's Collaboration with the CSA and NASA

Energy management in satellites

Variable emissivity for temperature stabilization

$La_{1-x}Sr_{x}MnO_{3} - LSMO$

Metal (low ε) to insulator (high ε) phase transition (MIT): - 10 °C to + 100 °C

T_{MIT} depends on the Sr concentration (x)

Ways to change ε:

- Louvers
- MEMS
- Electrochromics
- Thermochromics

A. Urushibara, Phys. Rev. B, 51 (1995) 14103

Temperature dependent optical constants

k (λ, **T**)

2.2 < n < 5.8 @ 15 μm

This allows one to calculate specular:

Reflection: (λ , T, θ ,s-p, d,) Transmission: (λ , T, θ ,s-p, d,) Adsorption (λ , T, θ ,s-p, d,)

on different substrates or in multilayers

O. Zabeida et al., Proc. SVC, 2010

Emissivity from ellipsometry and calorimetry measurements

0.7 ••••• 0.6 **Total emissivity** 0.5 0.4 LSMO18 on Si ellipsometry LSM018 on Al2O3 calorimetry 0.3 0.2 -100 -50 0 50100 150 Temperature, C

RADARSAT is being lowered into the Thermal Vacuum Chamber during thermal qualification at the Canadian Space Agency's David Florida Laboratory in Ottawa. Courtesy of: Communications Research Center Canada • Excellent agreement between two methods: Ellipsometry and calorimetry

• ∆ε **≈ 0.4**

O. Zabeida et al., Proc. SVC, 2010

Conclusions

Each optical application represents specific environmental stability and functional properties criteria:

- a) Need for better understanding multitechnique approaches
- b) New metrology applicable to optical coatings
- c) New solutions materials, processes, design strategies

Acknowledgements

Jolanta E. Klemberg-Sapieha

Young collaborators from FCSEL:

Bill Baloukas Etienne Bousser Eda Cetinorgu Stephane Larouche Daniel Poitras Richard Vernhes Oleg Zabeida

For more information about our work: www.polymtl.ca/larfis, lmartinu@polymtl.ca 6th Symposium on Functional Coatings and Surface Engineering, Montreal, June 5-8, 2011 www.fcse-montreal.ca

FUNCTIONAL COATINGS AND SURFACE ENGINEERING

Organized by

RQMP - Regroupement québécois sur les matériaux de pointe in collaboration with **AVS** Science and Technology of Materials, Intefaces and Processing and hosted by École Polytechnique de Montréal and Université de Montréal

SYMPOSIUM TOPICS

	 Thin films with tailored optical, mechanical, tribological, electrical, thermal and other functional properties
MONTREAL	Smart coating materials and film systems
OUEPEC	 Vacuum and non-vacuum deposition processes, process control and diagnostics
QUEDEC	 Plasma processes and plasma-surface interactions
CANADA	 Thin film systems for passive and active optical filters and waveguides
	 Protective tribological coatings with enhanced wear, scratch, abrasion, erosion and corrosion resistance
ILINE 5-8	Characterization methods of the microstructure and of the functional properties
2011	 Thin film materials and systems for optical, optoelectronic, aerospace, energy-control, biomedical, micro-system, sensor and other applications
	 Surface and interface engineering approaches for the control of adhesion, stress and environmental stability

- 1. L. Martinu and D. Poitras, "Plasma deposition of optical films and coatings: a review", *J. Vac. Sci. Technol. A*, vol. 18, pp. 2619-2645, 2000.
- 2. L. Martinu and J.E. Klemberg-Sapieha, "Optical Coatings on Plastics", in *Optical Interference Coatings*, N. Kaiser and H.K. Pulker, eds., Berlin: Springer, 2003, pp. 359-391.
- J.E. Klemberg-Sapieha, J. Oberste-Berghaus, L. Martinu, R. Blacker, I. Stevenson, G. Sadkhin, D. Morton, S. McEldowney, R., P.J. Martin, N. Court, S. Dligatch, M. Gross, and R.P. Netterfield, "Mechanical characteristics of optical coatings prepared by various techniques: a comparative study", *Appl. Optics*, vol. 43, pp. 2670-2679, 2004.
- 4. L. Martinu, B. Hichwa, and J.E. Klemberg-Sapieha, "Advances in optical coatings stimulated by the development of deposition techniques and the control of ion bombardment", Chapter 9 in "50 years of vacuum coating technology", Society of Vacuum Coaters, Albuquerque, NM, 2007, pp. 56-69.
- 5. S. Larouche and L. Martinu, "OpenFilters: open-source software for the design, optimization, and synthesis of optical filters", *Appl. Optics*, vol. 47, pp. C220-C230, 2008.
- 6. L. Martinu, O. Zabeida and J.E. Klemberg-Sapieha, "Plasma-Enhanced Chemical Vapor Deposition of Functional Coatings", Chapter 9 in the "Handbook of Thin Film Deposition Technologies", P.M. Martin, ed., Elsevier, Amsterdam, 2009, pp. 394-467.
- L. Martinu, "Plasma Deposition and Testing of Hard Coatings on Plastics", in "Plasma Processing Polymers", R. d'Agostino, P. Favia, and F. Fracassi, eds., Kluwer Academic Publishers, Dordrecht, 1997, pp. 247-272.