THALES

Profil de défaut de surface et perte de FTM

Défauts de surfaces et moyens de simulation :					
Type de défaut	Classique	Moyennes fréquences			
Technique de polissage	Polissage traditionnel Commande Numérique (CN)	Polissage sous surfacique (MRF, slurry jet, small pad)			
Défaut de surface	Défaut de forme torique SA3, SA5	Défaut dans la gamme des fréquences spatiales intermédiaires (MSF) non interpolable par les polynômes de Zernike			
		a 299 oblique Pit +0.0882 +0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -			
		Exemple : ondulations concentriques			
Moyen de simulation	Tolérances d'irrégularités (CYN, CYD) DAK, DAA, ZRN	Interférogrammes (INT)			

OBJECTIF : Prédire la perte de FTM due aux défauts de surface de fréquences moyennes sans avoir recours à la simulation

L'objectif consiste à identifier un critère permettant de quantifier la perte de FTM de manière industrielle et fiable

THALES

L'étude est réalisée sur la surface d'une lentille comprise dans le variateur d'un zoom. Pour évaluer la perte de FTM due à un défaut de surface, on applique sur cette surface l'interférogramme du défaut.

MÉTHODE ADOPTÉE:

- 1) Identifier des critères pertinents de quantification de la perte de FTM
- 2) Tester les critères sur des défauts de surfaces théoriques parfaitement sinusoïdaux
 - 3) Evaluer ces critères sur des défauts de forme de surfaces réelles comprenant des moyennes fréquences

Type de défaut	Description
Défaut sinusoïdal mono fréquence	 - 40 défauts de surface - défauts de <u>PENTE RMS identique</u> - de 1 à 40 périodes sur le diamètre
Défaut sinusoïdal bi fréquence	 - 11 défauts de surface - défauts de <u>PENTE RMS identique</u> - somme d'un défaut de 3 périodes et d'un défaut de 21 périodes sur le diamètre - <u>PV relatif variable</u> entre les deux périodes
Défaut de surface asphérique	- 21 défauts de surfaces réelles mesurées

2 Critères

- Critères classiques

- Critères fréquentiels utilisés

Les CRITÈRES CLASSIQUES basés sur le PV ou le RMS ne « voient pas » les défauts de fréquences intermédiaires. Seule la PENTE RMS est capable de quantifier des défauts fréquentiels.

Les critères classiques ne sont pas adaptés. Ils sont utiles pour des défauts lisses, basse fréquence et proche de la limite de diffraction.

Critères	Définition	Commentaire
Critère de Rayleigh $PV = \frac{\lambda}{4}$	La différence de marche maximale entre le front d'onde et la sphère de référence doit être égale à ¼ de la longueur d'onde pour une qualité d'image « sensiblement » identique.	Valide pour des défauts de surfaces lisses et basses fréquences
Hauteur RMS $RMS = \frac{\lambda}{14} \dot{a} \frac{\lambda}{20}$	Sans défauts locaux : $RMS = \frac{\lambda}{14}$ Avec défauts locaux : $RMS = \frac{\lambda}{20}$	Critère de Rayleigh en considérant : PV = 3.5 à 5 * RMS
Critère de Maréchal Strehl ratio = 0,8	Le SR est le rapport de l'éclairement du front d'onde avec aberration au centre de la tache d'Airy sur l'éclairement au centre sans aberration. $SR = e^{-(2\pi \cdot RMS/\lambda)^2} \approx 1 - (2\pi \cdot RMS/\lambda)^2$	Un SR de 0.8 correspond au critère de Rayleigh de λ/14.
Diamètre du spot image	Dépend de : -la PENTE RMS, l'ouverture -les indices de réfraction $\phi_{spot}^{RMS}(S) = \frac{4 \cdot N \cdot R_{beam} \cdot \tan \theta _{S}^{RMS} \cdot (n_{2} - n_{1})}{\cos^{3}(i)}$ -l'incidence et du diamètre du faisceau	Pas de lien avec la perte de FTM à une fréquence donnée

2- Critères fréquentiels utilisés

3. Défaut sinusoïdal mono fréquence

- PENTE RMS et FTM

- PSD

- Fonction structure

3- Défaut sinusoïdal mono fréquence : PENTE RMS et FTM 🤇

→Bonne corrélation entre la perte FTM moyenne et la perte FTM maxi

→ Pour une PENTE RMS surfacique donnée, un défaut de fréquence plus élevée induit une perte FTM plus faible.

→ La PENTE RMS surfacique pondérée suivant la fréquence permet d'obtenir une perte FTM constante.

3 Défaut sinusoïdal mono fréquence : PSD (

(11)

Solution Structure Solution Structure Descriptif des défauts sinusoïdaux: Descriptif des defauts sinusoïdaux: Descripti des defauts sinusoïdaux: Descripti des defauts sinus defauts sinusoïdaux:

10

Basses

fréquences

100

Le même type de spécification peut être utilisé pour la fonction structure.

THALES

12

0.01

0.001

0.1

Hautes

fréquences

-SPR4 -SPR40

1

Séparation (mm)

4- Défaut sinusoïdal à deux fréquences 🔶

4 Défaut sinusoïdal à deux fréquences
-PENTE RMS et FTM
- PSD et Fonction Structure

4- Défaut sinusoïdal à deux fréquences 🗲

4- Défaut sinusoïdal à deux fréquences : PENTE RMS 🗲

RAPPEL : Pour une PENTE RMS surfacique donnée, un défaut de fréquence plus élevée induit une perte FTM plus faible.

COEXITENCE DE DEUX FREQUENCES et perte FTM : →II faut considérer la fréquence « dominante » uniquement pour évaluer la perte FTM. → Cela confirme l'intérêt de spécifier la PSD et la fonction structure par un SEUILLAGE.

THALES

4- Défaut sinusoïdal à deux fréquences : PSD et FS 🔶

5- Défauts de surfaces réelles
- Perte FTM
-PENTE RMS et FTM
- FS et PSD

5- Défauts de surfaces réelles : perte FTM 🔶

(18)

5- Défauts de surfaces réelles : PENTE RMS 🗲

 →Mauvaise corrélation entre la PENTE RMS et la perte FTM maxi
 →Corrélation entre la PENTE RMS et la perte FTM moyenne légèrement meilleure

5- Défauts de surfaces réelles : FS et PSD 🗲

THALES

Les **critères classiques** comme le critère de Maréchal, ou le critère de Rayleigh spécifiant le PV ou la hauteur RMS de la surface sont **inadaptés** pour spécifier un défaut de surface moyennes fréquence.

La **PENTE RMS, la PSD ou la Fonction Structure** sont des outils qui prennent en compte les **défauts moyennes fréquences**.

	Défauts de surfaces sinusoïdaux	Défauts de surfaces réelles moyennes fréquences
Corrélation entre la FTM maxi et la FTM moyenne		$\overline{\mathbf{\dot{s}}}$
Seuillage de la PSD et de la Fonction Structure et FTM		(\dot{c})

Points à relever :

- 1) Difficulté de prédire une perte de FTM sans considérer les sous-pupilles de la surface vues par le faisceau
- 2) Quid sur la simulation des interférogrammes sous CodeV : perte de FTM très différentes pour des défauts similaires
- 3) Construire des critères plus élaborés

