The Aberration Fields of Optical Systems Without Rotational Symmetry

 In the 1970s Prof. Shack (UofAz), working from a Star Plate from a recently commissioned telescope on Kitt Peak, an insight from Dick Buchroeder (OSC '77), and a lost vector operation, vector multiplication, discovered Nodal Aberration Theory

 His key result, which explained the Star Plate anomaly, was the equation for binodal astigmatism

• From here, Thompson (OSC '80) went on to derive the Nodal Aberration Fields for all of the 3rd and 5th order aberrations in Tilted and Decentered optical systems comprised of Rotationally Symmetric surfaces, or, off-axis sections of these surfaces (see JOSA A)

• We are now expanding the theory to include freeform optics

A first Truly Non-Symmetric Optical System

- F/1.9, 10° FFOV Low Cost LWIR Imager
 - Micro-Bolometer
 - 320x240 pixel resolution, 25µm pitch
 - Uncooled
 - Does not need accessible exit pupil
 - Requires fast system F/#
 - Drives up spherical volume of system
 - Compact Geometry
 - Large input port in small spherical volume
 - Unobscured

25.00

Optimized Design

- φ-polynomials are used for optimization in defined manner
 - For field constant correction
 - For field dependent correction
- Possible to reach solution
 - RMS WFE at λ = 10 µm less than λ /50 over 10° FFOV

Fuerschbach et al Opt. Exp. 19(22) (2011)

Start with On Axis Solution

- NPP Solution
 - RMS wavefront error less than < λ/250 over 10° FFOV

Minimum = 0.0028776 Maximum = 0.0038846 Average = 0.0031063

From On-Axis, Tilt the Surfaces & Watch the Aberrations

~25% Tilt

~100% Tilt

25.40 MM

Within the FOV only

Optimized Design

Final Optimized Solution

With further implementation of design using demonstrated strategies:

– Reach solution with RMS wavefront error at a λ = 10 µm of less than λ /50 over 10° FFOV

