Transmission cohérente sur fibre optique

CFOR: Technologies des réseaux à fibres optiques multi-terabit/s

- Gabriel CHARLET
- 1er Dec. 2016
Introduction

- Long haul optical systems transport almost all data traffic (>99%).
- Undersea optical systems are the successor of the first telegraphic undersea cables!
- Transport data, video, internet, voice (fix & mobile) over a single network.
- Initial deployment of optical networks in the 1980s.
OUTLINE

- **Direct detection**
- Basics of coherent detection
- Implementation of coherent transponder
- System performances obtained thanks to coherent
- Conclusion
Optical data transmission

Encoding bits on an optical signal, fiber transmission and reverse operation

- Benefits from fiber optics:
 - Low attenuation ~0.2dB/km
 - Wide bandwidth with low attenuation (>>10THz)
 - Efficient optical amplification (Erbium doped fiber amplifier over 2 x 5THz)
Point to point WDM system

- Typically 80 to 100 channels (wavelengths) with 50GHz spacing
- 100-200Gb/s per channels typical in 2016
- Span length : 50 to 100km (10 to 30dB span loss typically)
- 10-20 amplifiers for terrestrial systems, up to 200 for undersea systems!
Electrical field and spectrum of laser

- 1.55µm used in long distance telecom industry to benefit from the lowest attenuation of fiber and of optical amplification from EDFA.
- This wavelength corresponds to a frequency of ~200THz
Modulation format, constellation diagram, spectrum

- Constellation diagram represents the field of the electrical signal at the center of each symbol.
- Spectrum width (of first lobe) is twice the modulation speed
Direct detection

Direct detection is the conventional way to detect optical signal.
= QUADRATIC detection of electric field,

\[|A_s(t)|^2 \]

25ps (@40Gb/s) ~5fs (@1.55µm)

Decision element
OUTLINE

• Direct detection
• **Basics of coherent detection**
• Implementation of coherent transponder
• System performances obtained thanks to coherent
• Conclusion
Modulation format and constellation diagram

Phase shift keying

Evolution of optical field

Constellation diagram

Spectrum

OOK: on off keying
BPSK: binary phase shift keying
QPSK: quadrature phase shift keying
Differential detection

Direct detection is the conventional way to detect optical signal.
= QUADRATIC detection of electric field,

\[\sim |A_s(t)|^2 \]

Differential detection
= Optical demodulator + direct detection
- Suited for detection of phase modulated signal

\[\sim |A_s(t)+A_s(t+T)|^2 \]
Coherent detection

Coherent detection

= LINEAR detection of the electric field, by beating with local oscillator (LO)
- LO frequency = Signal frequency \rightarrow homodyne detection
- LO frequency \neq Signal frequency \rightarrow heterodyne detection
- LO frequency \approx Signal frequency \rightarrow intradyne detection

Optical signal \rightarrow Local oscillator (LO) \rightarrow Electrical signal $\sim A_s A_{LO}$
Motivation for coherent detection in the 1980’s

- No optical amplifier available at that time.
- Transmission distance was mostly limited by fiber attenuation.
- « Amplification » provided by strong local oscillator. $A_s A_{LO} \text{ vs } A_s A_s$

<table>
<thead>
<tr>
<th>150km fiber</th>
<th>150km fiber</th>
<th>30dB</th>
<th>45dB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75km</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Amplitude shift Keying (ASK) vs Phase shift Keying (PSK) ?

Table 2.2. Number of photons per one signal bit required to achieve BER = 10^{-9}.

<table>
<thead>
<tr>
<th>Coherent schemes</th>
<th>$N_{required}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterodyne</td>
<td></td>
</tr>
<tr>
<td>ASK</td>
<td>80</td>
</tr>
<tr>
<td>FSK</td>
<td>40</td>
</tr>
<tr>
<td>PSK/DPSK</td>
<td>20</td>
</tr>
<tr>
<td>Homodyne</td>
<td></td>
</tr>
<tr>
<td>ASK</td>
<td>40</td>
</tr>
<tr>
<td>PSK</td>
<td>10</td>
</tr>
</tbody>
</table>
Coherent detection in the 1980’s
Homodyne or heterodyne?

<table>
<thead>
<tr>
<th>Item</th>
<th>Heterodyne</th>
<th>Homodyne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver sensitivity</td>
<td>3 dB worse than homodyne</td>
<td>3 dB better than heterodyne</td>
</tr>
<tr>
<td>Optical phase stability</td>
<td>Not needed unless coherent postdetection is employed</td>
<td>Needed</td>
</tr>
<tr>
<td>Optical frequency stability</td>
<td>Needed. The requirement is not stringent unless coherent postdetection is employed</td>
<td>Needed. The requirement is very stringent</td>
</tr>
<tr>
<td>Polarization stability</td>
<td>Needed</td>
<td>Needed</td>
</tr>
<tr>
<td>Required detection bandwidth</td>
<td>5～6 times that of homodyne system</td>
<td>Equal to baseband</td>
</tr>
</tbody>
</table>

Modulated signal

BW

LO

f
Coherent detection in the 1980’s
Homodyne or heterodyne?

<table>
<thead>
<tr>
<th>Item</th>
<th>Heterodyne</th>
<th>Homodyne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver sensitivity</td>
<td>3 dB worse than homodyne</td>
<td>3 dB better than heterodyne</td>
</tr>
<tr>
<td>Optical phase stability</td>
<td>Not needed unless coherent postdetection is employed</td>
<td>Needed</td>
</tr>
<tr>
<td>Optical frequency stability</td>
<td>Needed. The requirement is not stringent unless coherent postdetection is employed</td>
<td>Needed. The requirement is very stringent</td>
</tr>
<tr>
<td>Polarization stability</td>
<td>Needed</td>
<td>Needed</td>
</tr>
<tr>
<td>Required detection bandwidth</td>
<td>5~6 times that of homodyne system</td>
<td>Equal to baseband</td>
</tr>
</tbody>
</table>

But EDFA was invented...
Renewal interest for coherent detection ~2005

• Technological evolutions:
 - Availability of high speed ADC (high bandwidth, high sampling rate)
 - Strong progress of CMOS digital signal processing capabilities

• Optical transmission landscape
 - Phase shift keying modulation used again! (with differential detection) DPSK, DQPSK
 - Electronic Signal processing (FFE, DFE,... for chromatic dispersion, PMD... mitigation)
 - Willingness to increase spectral efficiency

First “modern” coherent detection experiment in 2004-2005
Intradyne coherent detection

Coherent detection
- LINEAR detection of the electric field, by beating with local oscillator (LO)
 - LO frequency = Signal frequency → homodyne detection
 - LO frequency ≠ Signal frequency → heterodyne detection
 - LO frequency ≈ Signal frequency → intradyne detection
Interference at coherent mixer output
Coherent mixer or 90° hybrid

\[A_s e^{i(\omega_s t + \varphi(t))} \]

\[A_{lo} e^{i\omega_{lo} t} \]

\[
P D_1 = (E_s + E_{ol}).(E_s + E_{ol})^* = |A_s|^2 + |A_{ol}|^2 + 2A_s A_{ol} \cos[(\omega_s - \omega_{ol})t + \varphi(t)]
\]

\[
P D_2 = (E_s - E_{lo}).(E_s - E_{lo})^* = |A_s|^2 + |A_{ol}|^2 - 2A_s A_{ol} \cos[(\omega_s - \omega_{ol})t + \varphi(t)]
\]

\[
I_1(t) = 4A_s A_{lo} \cos[(\omega_s - \omega_{lo})t + \varphi(t)] \quad \text{In phase "I"}
\]

\[
I_2(t) = 4A_s A_{lo} \sin[(\omega_s - \omega_{lo})t + \varphi(t)] \quad \text{Quadrature "Q"}
\]
Polarization diversity receiver
signal polarization fluctuate over time => polarization diversity RX required
Polarization division multiplexing: PDM
Double the bit rate transported
OUTLINE

• Direct detection
• Basics of coherent detection
• Implementation of coherent transponder
• System performances obtained thanks to coherent
• Conclusion
Digital coherent receiver versus direct-detected systems...

Singly-polarized signal

X

Y

10 Gb/s NRZ receiver (direct-detection)

just intensity...

Photo diode

Decision gate

Coherent receiver

Amplitude, phase and polarization!!

Analog-to-Digital Converters

Digital Signal Processing

Coherent mixer

Local oscillator

ADC

DSP

BER
Coherent receiver

Digital signal processing

Fiber out

Coherent Mixer

Sampling (scope)

Storage (scope)

DSP (PC)

Local oscillator

100Gb/s PDM-QPSK (experimental data)

ADC

ADC

ADC

ADC

CD compensation

Polarization Demultiplexing and Equalization

Carrier frequency and Phase Estimation

Symbol identification

BER & Q²-factor

storage

scope

\((I+jQ) \)
Coherent receiver

Digital signal processing

Fiber out

Coherent Mixer
Sampling (scope)
Storage (scope)
DSP (PC)

Local oscillator

100Gb/s PDM-QPSK (experimental data)

Carrier frequency and Phase Estimation
Symbol identification
BER & Q²-factor

Polarization Demultiplexing and Equalization

Storage

ADC
ADC
ADC
ADC

CD compensation

(I+jQ)

(I+jQ)
Coherent receiver

Digital signal processing

Fiber out

Coherent Mixer

Sampling (scope)

Storage (scope)

DSP (PC)

Local oscillator

100Gb/s PDM-QPSK (experimental data)

Carrier frequency and Phase Estimation

Symbol identification

BER & Q^2-factor

CD compensation

Polarization Demultiplexing and Equalization

ADC

storage

scope

(1+jQ)_p

(1+jQ)_i

<Change information classification in footer>
Coherent receiver

Digital signal processing

Fiber out

Coherent Mixer
Sampling (scope)
Storage (scope)
DSP (PC)

Local oscillator

CD compensation
Polarization Demultiplexing and Equalization
Carrier frequency and Phase Estimation
Symbol identification
BER & Q²-factor

100Gb/s PDM-QPSK (experimental data)
Coherent receiver

Digital signal processing

Fiber out

Coherent Mixer

Sampling (scope)

Storage (scope)

DSP (PC)

Local oscillator

100Gb/s PDM-QPSK (experimental data)

ADC

storage

scope

CD compensation

Polarization Demultiplexing and Equalization

Carrier frequency and Phase Estimation

Symbol identification

FEC

$\frac{(I+jQ)}{2}$
Chromatic dispersion compensation block

- Each symbol has a given spectral extension (~Baudrate).
Chromatic dispersion compensation block

- Each symbol has a given spectral extension.
- After transmission and chromatic dispersion impact, symbols overlap each others
- Frequency domain implementation to delay some frequencies and resynchronize all frequency components from transmitter symbol.
- Each symbol can overlap > 1000 symbols for transoceanic links.
ADC and DSP in a single CMOS chip

- 2010: first apparition of high speed CMOS ADC
- 56GS/s sampling rate, 8 bit resolution and ~15GHz analog bandwidth

- Total amount of data to be processed for 100Gb/s PDM-QPSK: $4 \times 56 \times 8 = 1.8\text{Tb/s}$!
- Unpractical to exchange 1.8Tb/s between 2 separate chips => single chip required for ADC and DSP. CMOS required for low power DSP.

- In 2010, first ADC-DSP chip with 65nm CMOS technology including
 - 4 ADCs (56GS/s, 8bits)
 - CD compensation (~2000km)
 - Clock recovery
 - MIMO 2x2 (polarization deMux, equalization)
 - Optical carrier frequency estimation
 - Optical carrier phase estimation
 - FEC (product code BCHxBCH)
MIMO processing (polarization demultiplex. & equalization)

- Equalization is NOT done thanks to channel estimation (through training sequence or pilot), NOR by using decision on the symbol after full DSP processing.
- Blind equalization using only the intensity information (before phase processing). => no overhead associated with training sequence or pilot.
Polarization Mode Dispersion (PMD) and coherent detection

- PMD caused by fiber optics imperfections (stress, non perfect circular symmetry...).

- PMD is a stochastic effect. Differential group delay (DGD) can be ~3 times larger than average DGD value.

- PMD has been a major limitation for the deployment of 40Gb/s systems.

- But entirely solved with MIMO equalizer of coherent receiver!
Carrier phase estimation (CPE)
Required because intradyne detection is used

- Phase estimation is a key part allowing to avoid the use of « optical phase locked laser » of the 1980’s.
- Preceded by coarse frequency estimation to allow for several GHz of frequency offset between TX and RX laser.
- Various algorithms available, here for QPSK.
Bit error rate and forward error correction (FEC)

- Optical communication requested BER is 10^{-13} (or even 10^{-16}).
- Maximization of transmission reach and/or capacity is obtained through the use of forward error correction similarly to any other digital systems.
- But processing of up to 500Gb/s in a single chip!

<table>
<thead>
<tr>
<th>Code rate (r)</th>
<th>Overhead (OH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r=0.8$</td>
<td>$25%$</td>
</tr>
<tr>
<td>$r=0.5$</td>
<td>$100%$</td>
</tr>
</tbody>
</table>

- 2000: 7% overhead and code RS 255-239: FEC threshold 10^{-4} ($Q\sim11.5\text{dB}$)
- 2003: 7% overhead and code BCHxBCH: FEC threshold 4×10^{-3} ($Q\sim8.5\text{dB}$)
- 2012: 25% overhead and “soft decision” LDPC (low density parity check): FEC threshold $\sim2 \times 10^{-2}$ ($Q\sim5.5\text{dB}$)
Maximizing bit rate per device to minimize cost per bit
Maximizing baudrate, format level & carrier count per ASIC

Tremendous progress of high speed optical coherent interfaces
Opto-electronic components

multi-channel photonic integration:
• Dual PDM I/Q modulator
• dual tunable laser
• dual coherent receiver
• dual ADC/DSP/DAC chip...

PDM I/Q modulator (LiNbO3, InP, SiPho) Tunable laser (InP)
Quad driver (InP, GaAs)
ADC, DSP, DAC (CMOS)
Coherent receiver (InP, SiPho, free space...)

© Nokia 2016
Spectrum shaping thanks to DAC (Digital to Analog Convertor) at TX

Time domain (impulse response)

Frequency domain (spectrum)

Spectrum shaping thanks to digital filter in transmitter to reduce spectrum occupancy and increase spectrum efficiency.
OUTLINE

• Direct detection
• Basics of coherent detection
• Implementation of coherent transponder
• System performances obtained thanks to coherent
• Conclusion
Progress in submarine capacity per fiber (transmission distance > 6000km)

Strong capacity increase thanks to coherent detection
Shannon limit
For dual polarization signal, AWGN channel

\[C = 2 \cdot \log_2(1 + \text{SNR}) \]
Example of recent record experiments

- 15.5Tb/s 155x100Gb/s HD-FEC
- 38.7Tb/s 155x250Gb/s 16QAM Spectrum shaping SD-FEC
- 65Tb/s Probabilistic shaped 64QAM Nonlinear mitigation
65Tb/s transmission over 6,600km
Thanks to Probabilistic Constellation Shaping and NL mitigation

- Highest capacity over submarine distance.
 - Probabilistic constellation shaping
 - Nonlinear mitigation
 - Adaptive rate FEC

Probabilistic constellation shaping: **PCS 64QAM**

Highest capacity, close to expected limits
Nonlinear mitigation

- Optical channel is not an arbitrary white Gaussian noise (AWGN) channel.
- Kerr nonlinearities because of propagation through optical fiber.

\[
i \frac{\partial A}{\partial z} + \frac{i}{2} \alpha A - \frac{\beta_2}{2} \frac{\partial^2 A}{\partial T^2} - \frac{i}{6} \beta_3 \frac{\partial^3 A}{\partial T^3} + |A|^2 A = 0
\]

- Attenuation
- Dispersion
- Kerr nonlinearities

TX → Fiber optic channel → CD Comp → MIMO 2x2 → Phase Est. → FEC
Nonlinear mitigation

- Optical channel is not an arbitrary white Gaussian noise (AWGN) channel.
- Kerr nonlinearities because of propagation through optical fiber.

\[
i \frac{\partial A}{\partial z} + \frac{i}{2} \alpha A - \frac{\beta_2}{2} \frac{\partial^2 A}{\partial T^2} - \frac{i}{6} \beta_3 \frac{\partial^3 A}{\partial T^3} + \gamma |A|^2 A = 0
\]

- Attenuation
- Dispersion
- Kerr nonlinearities

TX
Fiber optic channel

C D L C D N L ** C D N L

MIMO 2x2
Phase Est.
FEC
OUTLINE

• Direct detection
• Basics of coherent detection
• Implementation of coherent transponder
• System performances obtained thanks to coherent
• Conclusion
Conclusion

- Coherent detection has revolutionized the world of optical communication.
 - Removed the need for optical dispersion compensation
 - Solved the PMD issue
 - Practical way to use the 2 polarization of the light
 - Drastically Increased the spectral efficiency

400Gb/s on a single wavelength!

- We are now approaching the spectral efficiency limits of fiber optics...